4.甲、乙兩地都位于長(zhǎng)江下游,根據(jù)天氣預(yù)報(bào)的記錄知,一年中下雨天甲市占20%,乙市占18%,兩市同時(shí)下雨占12%.則甲市為雨天,乙市也為雨天的概率為(  )
A.0.6B.0.7C.0.8D.0.66

分析 記甲市下雨為事件A,乙市下雨為事件B,根據(jù)題意可得P(A)、P(B)、P(AB)的值,“乙市下雨時(shí)甲市也下雨的概率”就是求“在乙市下雨的條件下,甲市也下雨的概率”,由條件概率公式,計(jì)算可得答案

解答 解:記甲市下雨為事件A,乙市下雨為事件B,
根據(jù)題意有P(A)=0.2,P(B)=0.18,P(AB)=0.12;
則在甲市下雨的條件下,乙市下雨的概率為$\frac{p(AB)}{P(A)}$=$\frac{0.12}{0.20}$=0.6;
故選A

點(diǎn)評(píng) 本題考查條件概率的計(jì)算,解題的關(guān)鍵是理解要求的“乙市下雨時(shí)甲市也下雨的概率”的意義

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.七個(gè)人排成一排.
(1)甲、乙、丙排在一起,共有多少種排法?
(2)甲、乙相鄰,且丙、丁相鄰,有多少種排法?
(3)甲、乙、丙排在一起,且都不在兩端,有多少種排法?
(4)甲、乙、丙排在一起,且甲在兩端,有多少種排法?
(5)甲、乙之間恰有2人的排法有多少?
(6)甲、乙之間是丙的排法有多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一次口試,每位考生要在8道口試題中隨機(jī)抽出2道題回答,若答對(duì)其中1題即為合格.
(1)現(xiàn)有某位考生會(huì)答8題中的5道題,那么,這位考生及格的概率有多大?
(2)如果一位考生及格的概率小于50%,則他最多只會(huì)幾道題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某人每次投籃投中的概率為$\frac{4}{5}$,若此人連續(xù)投3次,則至少有2次投中的概率為$\frac{112}{125}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{ax-3}{x+1}$(a∈R).
(1)若不等式f(x)<1的解集為(-1,4),求a的值;
(2)設(shè)a≤0,解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為(  )
A.72B.86C.98D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線y=kx與圓(x-2)2+(y+1)2=4相交于A,B兩點(diǎn),若|AB|≥2$\sqrt{3}$,則k的取值范圍是$[-\frac{4}{3},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),過點(diǎn)B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率為1的直線l交橢圓E于C、D兩點(diǎn),點(diǎn)B恰為線段CD的中點(diǎn),點(diǎn)B恰為線段CD的中點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)線段RS(S為橢圓上半部分不包括左頂點(diǎn)的點(diǎn))是過橢圓右焦點(diǎn)F的弦,滿足$\overrightarrow{RF}$=λ$\overrightarrow{FS}$,當(dāng)P點(diǎn)坐標(biāo)為($\sqrt{3}$,$\frac{1}{2}$)且△PRS的面積最大時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{2x}{{x}^{2}+1}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案