4.復(fù)數(shù)z1=cosx-isinx,z2=sinx-icosx,則|z1•z2|=(  )
A.1B.2C.3D.4

分析 直接利用復(fù)數(shù)的乘法以及三角函數(shù)的運(yùn)算法則化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.

解答 解:復(fù)數(shù)z1=cosx-isinx,z2=sinx-icosx,則z1•z2=cosxsinx-cosxsinx+i(-cos2x-sin2x)=-i.
則|z1•z2|=1.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,復(fù)數(shù)的模的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓E:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1,過(guò)焦點(diǎn)(0,2)的直線l與橢圓交于M,N兩點(diǎn),點(diǎn)A坐標(biāo)為(0,$\frac{9}{2}$),$\overrightarrow{AN}$•$\overrightarrow{MN}$=0,則直線l斜率為(  )
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\sqrt{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.2022年第19屆亞運(yùn)會(huì)將在中國(guó)杭州舉行,為使我國(guó)運(yùn)動(dòng)員能奪得首項(xiàng)金牌,組委會(huì)將我國(guó)運(yùn)動(dòng)員的某強(qiáng)項(xiàng)設(shè)置為產(chǎn)生金牌的第一個(gè)項(xiàng)目.已知我國(guó)參加該項(xiàng)目有甲、乙、丙3名運(yùn)動(dòng)員,他們能獲得獎(jiǎng)牌的概率依次為$\frac{4}{5}$,$\frac{3}{5}$,$\frac{3}{5}$,能獲得金牌的概率依次為$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{3}$.
(Ⅰ)求我國(guó)運(yùn)動(dòng)員能獲得首項(xiàng)金牌的概率;
(Ⅱ)求我國(guó)運(yùn)動(dòng)員獲得的獎(jiǎng)牌數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2,求m的值,;
(2)若l1∥l2,且它們的距離為$\sqrt{5}$,求m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=x|x+a|+b為奇函數(shù),則a為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|x+6|-|x-m|)(m∈R)
(Ⅰ)當(dāng)m=3時(shí),求不等式f(x)≥5的解集;
(Ⅱ)若不等式f(x)≤7對(duì)任意實(shí)數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線C1的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosα}\\{y=\sqrt{3}+2sinα}\end{array}\right.$(α為參數(shù)).
(1)求直線C1的直角坐標(biāo)方程和圓C2的圓心的極坐標(biāo);
(2)設(shè)直線C1和圓C2的交點(diǎn)為A,B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.甲、乙兩人約定在中午12時(shí)到下午1時(shí)之間到某站乘公共汽車(chē),又知這段時(shí)間內(nèi)有4班公共汽車(chē).設(shè)到站時(shí)間分別為12:15,12:30,12:45,1:00.如果他們約定:(1)見(jiàn)車(chē)就乘;(2)最多等一輛.試分別求出在兩種情況下兩人同乘一輛車(chē)的概率.假設(shè)甲乙兩人到達(dá)車(chē)站的時(shí)間是相互獨(dú)立的,且每人在中午12點(diǎn)到1點(diǎn)的任意時(shí)刻到達(dá)車(chē)站是等可能的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.圓O1:x2+y2-2x=0和圓O2:x2+y2-4y+3=0的位置關(guān)系是( 。
A.外切B.內(nèi)切C.相交D.相離

查看答案和解析>>

同步練習(xí)冊(cè)答案