設(shè)有兩個命題:p:函數(shù)y=ax(a>0,a≠1)是減函數(shù),q:函數(shù)y=lg(ax2-x+a)的定義域為R,如果p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:先求出命題p,q下的a的取值,根據(jù)p∨q為真,p∧q為假知,p,q中一真一假,從而討論p真q假,和p假q真的情況,求出每種情況下a的取值,再求并集即可.
解答: 解:命題p:0<a<1,命題q:由該命題知ax2-x+a>0的解集為R,∴a>0,且△=1-4a2<0,解得a
1
2

∵p∨q為真命題,p∧q為假命題;
∴p,q中一真一假;
若p真q假,則:0<a<1且a≤
1
2
,∴0<a≤
1
2

若p假q真,則:a≥1且a>
1
2
,∴a≥1;
∴實數(shù)a的取值范圍為(0,
1
2
]∪[1,+∞)
點評:考查指數(shù)函數(shù)的單調(diào)性,對數(shù)函數(shù)的定義域,一元二次不等式的解和判別式△的關(guān)系,p∨q,p∧q的真假和p,q真假的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是兩條不同的直線,α,β,γ是三個不同的平面,下列命題中正確的是( 。
A、若a∥α,b∥α,則a∥b
B、若a,b與α所成的角相等,則a∥b
C、若α⊥γ,β⊥γ,則α∥β
D、若a⊥α,a⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-10x+21≤0},B={m|關(guān)于x的方程x2-mx+3m-5=0無解}求:
(1)A∪B;
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a≠0,函數(shù)f(x)=ax(x-2)2(x∈R).
(Ⅰ)若函數(shù)f(x)有極大值32,求實數(shù)a的值;
(Ⅱ)若對任意x∈[-2,0],不等式f(x)<
16
9
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一矩形鐵皮的長為8m,寬為3m,在四個角各截去一個大小相同的小正方形,然后折起,可以制成一個無蓋的長方體容器,所得容器的容積V(單位:m3)是關(guān)于截去的小正方形的邊長x(單位:m)的函數(shù).
(1)寫出關(guān)于x(單位:m)的函數(shù)解析式;
(2)截去的小正方形的邊長為多少時,容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(
2
+1).一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1•k2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是整數(shù),a2是偶數(shù),用反證法證明:a也是偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
3
cos2
ax-sinaxcosax(a>0)的圖象與直線y=m(m>0)相切,并且切點橫坐標(biāo)依次成公差為π的等差數(shù)列.
(1)求a和m的值;
(2)△ABC中a、b、c分別是∠A、∠B、∠C的對邊.若(
A
2
3
2
)是函數(shù)f(x)圖象的一個對稱中心,且a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A的坐標(biāo)為(1,0),點B為x軸負(fù)半軸上的動點,以線段AB為邊作菱形ABCD,使其兩對角線的交點恰好在y軸上,則動點D的軌跡E的方程
 

查看答案和解析>>

同步練習(xí)冊答案