分析 根據(jù)已知中原函數(shù)的解析式,結合導數(shù)的運算性質及導數(shù)公式,可得各函數(shù)的導函數(shù)解析式.
解答 解:(1)∵y=(2x3-1)(3x2+x),
∴y′=(2x3-1)′(3x2+x)+(2x3-1)(3x2+x)′
=6x2(3x2+x)+(2x3-1)(6x+1)
=30x4+8x3-6x-1;
(2)∵y=3(2x+1)2-4x,
∴y′=6(2x+1)×2-4
=24x+8;
(3)∵y=$\frac{sinxlnx}{x}$,
∴y′=$\frac{(cosx•lnx+sinx•\frac{1}{x})x-sinxlnx}{{x}^{2}}$
=$\frac{cosx•lnx•x+sinx-sinxlnx}{{x}^{2}}$;
(4)∵y=extanx=$\frac{{e}^{x}•sinx}{cosx}$,
∴y′=$\frac{{(e}^{x}•sinx+{e}^{x}•cosx)•cosx+{e}^{x}•si{n}^{2}x}{co{s}^{2}x}$
=$\frac{{e}^{x}(sinx•cosx+1)}{co{s}^{2}x}$.
點評 本題考查的知識點是導數(shù)運算,熟練掌握導數(shù)的運算性質及導數(shù)公式,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=10% | B. | x<10% | ||
C. | x>10% | D. | x的大小由第一年的產量決定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1<a<2 | B. | 1≤a<3 | C. | a>0 | D. | 1<a<3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1),(1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com