18.已知矩陣$M=[{\begin{array}{l}1&0\\ 2&2\end{array}}]$,求逆矩陣M-1的特征值.

分析 先求矩陣M的行列式,進而可求其逆矩陣,令矩陣M-1的特征多項式等于0,即可求得矩陣M-1的特征值.

解答 解:矩陣M的行列式為=1×2-2×0=2,
∴矩陣M的逆矩陣M-1=$[\begin{array}{l}{1}&{0}\\{-1}&{\frac{1}{2}}\end{array}]$,
矩陣M-1的特征多項式為f(λ)=(λ-$\frac{1}{2}$)(λ-1)=0
令f(λ)=0可得λ=$\frac{1}{2}$或λ=1
即矩陣M-1的特征值為$\frac{1}{2}$或1.

點評 本題以矩陣為載體,考查矩陣的逆矩陣,考查矩陣M-1的特征值,關(guān)鍵是求其行列式,正確寫出矩陣M-1的特征多項式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在三棱錐A-BCD中,AB=$\sqrt{6}$,其余各棱長都為2,則該三棱錐外接球的表面積為( 。
A.B.$\frac{16}{3}$πC.D.$\frac{20}{3}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=xn-mlnx-1,其中n∈N*,n≥2,m≠0.
(1)當n=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當m=1時,討論函數(shù)f(x)的零點情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,其它四個側(cè)面都是側(cè)棱長為$\sqrt{5}$的等腰三角形.
(Ⅰ)求二面角P-AB-C的大小;
(Ⅱ)在線段AB上是否存在一點E,使平面PCE⊥平面PCD?若存在,請指出點E的位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若n階行列式D的每行的前n-1個元素之和為1,而后n-1個元素之和為3,求D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖隨時,AB是⊙O的直徑,C,D是⊙O上的兩點,OC⊥AD.過點B作⊙O的切線PB交AD的延長線于點P,連接BC交AD于點E.
(1)求證:PE2=PD•PA;
(2)若AB=PB,求△CDE與△ABE面積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=alnx-$\frac{1}{2}$x2+kx,其中a∈R,k∈R且a≠0.
(I)若k=0,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a=1,若函數(shù)f(x)存在兩個零點x1,x2(x1<x2),且x0=$\frac{{x}_{1}+{x}_{2}}{2}$,問:曲線y=f(x)在點x0處的切線能否與y軸垂直,若能,求出該切線的方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,AB為⊙O的直徑,過點B作⊙O的切線BC,OC交⊙O于點E,AE的延長線交BC于點D.
(Ⅰ)求證:CE2=CD•CB.
(Ⅱ)若D為BC的中點,且BC=2$\sqrt{2}$,求AB與DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線kx-y-k+1=0與圓x2+y2=4的位置關(guān)系是( 。
A.相交B.相切C.相離D.不確定

查看答案和解析>>

同步練習冊答案