已知|
OA
|=1,|
OB
|=
3
,
OA
OB
=0,點C在∠AOB內,且C(
3
4
3
4
),設
OC
=m
OA
+n
OB
(m,n∈R),則
m
n
的值為(  )
A、
1
3
B、3
C、
3
3
D、
3
考點:平面向量的基本定理及其意義
專題:平面向量及應用
分析:如圖所示,A(1,0),B(0,
3
)
.由
OC
=m
OA
+n
OB
,可得(
3
4
,
3
4
)=m(1,0)+n(0,
3
)
.解出即可.
解答: 解:如圖所示,
A(1,0),B(0,
3
)

OC
=m
OA
+n
OB
,
∴(
3
4
,
3
4
)=m(1,0)+n(0,
3
)

∴m=
3
4
3
n=
3
4
,解得n=
1
4

m
n
=3.
故選:B.
點評:本題考查了向量線性運算、向量基本定理,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

2sin15°cos15°=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z滿足z(1+i)=2(i為虛數(shù)單位),則z=( 。
A、1-iB、1+i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,左頂點為上頂點為B,△BF1F2是等邊三角形,橢圓C上的點到F1的距離的最大值為3.
(1)求橢圓C的方程;
(2)過F1任意作一條直線l交橢圓C于M、N兩點(均不是橢圓的頂點),設直線AM與直線l0x=-4交于P點,直線AN與l0交于Q點,請判斷點F1與以線段PQ為直徑的圓 的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A、B、C對的邊分別為a,b,c,sinA+
2
sinB=2sinC,b=3,則cosC的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點為A,P(
4
3
,
b
3
)是C上的一點,以AP為直徑的圓經過橢圓C的右焦點F
(1)求橢圓C的方程;
(2)動直線l與橢圓C有且只有一個公共點,問:在x軸上是否存在兩個定點,它們到直線l的距離之積等于1?如果存在,求出這兩個定點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要使函數(shù)y=ax+b有零點,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在?ABCD中,
AB
=
a
,
AD
=
b
,E、F分別是AB、BC的中點,G點使
DG
=
1
3
DC
,試以
a
b
為基底表示向量
AF
EG

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,CC1=4,M是棱CC1上的一點.
(1)求證:BC⊥AM;
(2)若N是AB的中點,且CN∥平面AB1M,求CM的長.

查看答案和解析>>

同步練習冊答案