20.已知f(x)=|x-1|+|x-3|+a(x2-2x),其中a≥0.
(1)若a=0,求f(x)的最小值;
(2)若存在實(shí)數(shù)x0,使得f(x0)=1,求實(shí)數(shù)a的取值范圍.

分析 (1)利用絕對(duì)值三角不等式,即可求f(x)的最小值;
(2)求出f(x)的最小值,即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)當(dāng)a=0時(shí),f(x)=|x-1|+|x-3|≥|(x-1)-(x-3)|=2,
當(dāng)且僅當(dāng)1≤x≤3時(shí)f(x)取得最小值2.(4分)
(2)設(shè)g(x)=|x-1|+|x-3|,h(x)=a(x2-2x),
則h(x)=a(x-1)2-a,即當(dāng)x=1時(shí),h(x)取得最小值-a,
由(1)知當(dāng)1≤x≤3時(shí),g(x)取最小值2,
所以f(x)=|x-1|+|x-3|+a(x2-2x)≥2-a(當(dāng)x=1時(shí)取等號(hào)),
所以1≥2-a,解得a≥1.(10分)

點(diǎn)評(píng) 本題考查絕對(duì)值三角不等式,考查存在性問(wèn)題,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1,A,B分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個(gè)動(dòng)點(diǎn),$\overrightarrow{OQ}$=λ•$\overrightarrow{OM}$(λ>0),|$\overrightarrow{OM}$|•|$\overrightarrow{OQ}$|=2,求動(dòng)點(diǎn)Q的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)直線的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),點(diǎn)P在直線上,且與點(diǎn)M(-4,0)的距離為$\sqrt{2}$,若將直線的參數(shù)方程該寫出$\left\{\begin{array}{l}{x=-4+t}\\{y=t}\end{array}\right.$(t為參數(shù)),則在這個(gè)方程中點(diǎn)P對(duì)應(yīng)的參數(shù)t等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x3-x+2,則f(x)在[0,1]上的最小值為$2-\frac{{2\sqrt{3}}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(Ⅰ)已知命題p:函數(shù)f(x)=(2a-5)x是R上的減函數(shù);
命題q:在x∈(1,2)時(shí),不等式x2-ax+2<0恒成立,若p∨q是真命題,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)條件p:2x2-3x+1≤0,條件q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.為了在一條河上建一座橋,施工前在河兩岸打上兩個(gè)橋位樁A,B(如圖),要測(cè)量A,B兩點(diǎn)的距離,測(cè)量人員在岸邊定出基線BC,測(cè)得BC=50m,∠ABC=105°,∠BCA=45°.就可以計(jì)算出A,B兩點(diǎn)的距離為(  )
A.50$\sqrt{2}$ mB.50$\sqrt{3}$  mC.25$\sqrt{2}$  mD.$\frac{25\sqrt{2}}{2}$  m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在邊長(zhǎng)為1的正方體ABCD-A1B1C1D1中,求B1到平面BCD1的距離( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.tan(arccos(-$\frac{{\sqrt{2}}}{2}$))=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=4lnx+a(1-x).
(1)若f(x)的單調(diào)性;
(2)當(dāng)f(x)有最大值,且最大值大于a-4時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案