7.如圖所示,棱長都相等的三棱錐A-BCD中,E、F分別是棱AB、CD的中點,異面直線AD與EF所成的角是( 。
A.45°B.30°C.60°D.90°

分析 取AC的中點O,連接OE,OF,則OF∥AD,則∠EFO是異面直線EF、AD所成角,證明OE2+OF2=EF2,即可得出結(jié)論.

解答 解:取AC的中點O,連接OE,OF,則OF∥AD,
∴∠EFO是異面直線EF、AD所成角,
連接CE,則CE=$\frac{\sqrt{3}}{2}$a,∴EF=$\frac{\sqrt{2}}{2}$a,
∵OE=OF=$\frac{a}{2}$,
∴OE2+OF2=EF2
∴OE⊥OF,
∴∠EFO=45°.
故選A.

點評 本題考查異面直線所成角,同時考查了轉(zhuǎn)化與化歸的思想,計算能力和推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值及△ABC的外接圓的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了檢測某種產(chǎn)品的質(zhì)量,抽取了一個容量為100的樣本,數(shù)據(jù)分組如下:
分組頻數(shù)頻率
[10.75,10.85)3
[10.85,10.95)9
[10.95,11.05)13
[11.05,11.15)16
[11.15,11.25)26
[11.25,11.35)20
[11.35,11.45)7
[11.45,11.55)a
[11.55,11.65)m0.02
(1)求出表中a,m的值;
(2)畫出頻率分布直方圖;
(3)根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(4)根據(jù)上述圖表,估計數(shù)據(jù)落在[10.95,11.35)范圍內(nèi)的可能性有百分之幾?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.把110010(2)化為十進(jìn)制數(shù)的結(jié)果是50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=|1-$\frac{1}{x}$|,若存在實數(shù)a,b(a<b),使得y=f(x)在[a,b]上的值域為[ma,mb],求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,則∠A等于( 。
A.30°B.60°C.60° 或120°D.30° 或 150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)在線段EF上是否存在點M,使得平面MAB與平面FCB所成銳二面角的平面角為θ,且滿足cosθ=$\frac{{\sqrt{5}}}{5}$?若不存在,請說明理由;若存在,求出FM的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\frac{π}{4}$<α<$\frac{π}{2}$,sin2α=$\frac{24}{25}$,則cosα-sinα=(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.±$\frac{1}{5}$D.±$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的圖象上有且僅有四個不同的點關(guān)于直線y=-1的對稱點在y=kx-1的圖象上,則實數(shù)k的取值范圍是(  )
A.$({\frac{1}{2},1})$B.$({\frac{1}{2},\frac{3}{4}})$C.$({\frac{1}{3},1})$D.$({\frac{1}{2},2})$

查看答案和解析>>

同步練習(xí)冊答案