4.在等差數(shù)列{an}中,a1,a2015為方程x2-20x+16=0的兩根,則a2+a1008+a2014=(  )
A.40B.36C.30D.24

分析 利用一元二次方程的根與系數(shù)的關(guān)系可得:a1+a2015=20,再利用等差數(shù)列的性質(zhì)即可得出.

解答 解:∵a1,a2015為方程x2-20x+16=0的兩根,
∴a1+a2015=20=2a1008
則a2+a1008+a2014=3a1008=30.
故選:C.

點(diǎn)評(píng) 本題考查了一元二次方程的根與系數(shù)的關(guān)系、等差數(shù)列的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.球O所在球面上有A,B,C三點(diǎn),球心O到平面ABC的距離為2,∠ABC=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,則球O的表面積為( 。
A.12πB.16πC.20πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求下列函數(shù)定義域:
(1)y=logx-1(3-x)
(2)$y=\sqrt{2sinx+1}+{log_2}(2cosx-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為響應(yīng)國(guó)家號(hào)召開展“社會(huì)實(shí)踐活動(dòng)”,某校高二(8)班學(xué)生對(duì)本縣住宅樓房屋銷售價(jià)格y和房屋面積x的統(tǒng)計(jì)有關(guān)數(shù)據(jù)如下:
房屋面積(m)11511080135105
銷售價(jià)格(萬(wàn)元)24.821.618.429.222
(可能用到的公式:)b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(Ⅰ)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(Ⅱ)設(shè)線性回歸方程為$\widehat{y}$=bx+a,已計(jì)算得b=0.196,$\overline{y}$=23.2,計(jì)算$\overline{x}$及a;
(Ⅲ)某同學(xué)家人計(jì)劃在本縣購(gòu)置一套面積為誒120m2的房子,且一次付清,根據(jù)(Ⅱ)的結(jié)果,估計(jì)房屋的銷售價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某單位有職工750人,其中青年職工420人,中年職工210人,老年職工120人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為14人,則樣本容量為(  )
A.7B.15C.25D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}<{a}_{n}≤1)}\end{array}\right.$,若a1=$\frac{4}{7}$,則a2015=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,定義域與值域相同的是( 。
A.y=$\frac{2}{x}$B.y=x2C.y=log2xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|x2+2x<0},B={x|($\frac{1}{2}$)x-2≥0},則A∩∁RB=( 。
A.(-2,-1)B.(-1,0)C.(-2,-1]D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在等差數(shù)列{an}中,首項(xiàng)a1=-1,數(shù)列{bn}滿足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=(-1)nan,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案