1.已知f(x)是R上的奇函數(shù),且f(2)=0,若f(x)在(0,+∞)上為增函數(shù),則不等式(x-3)f(x)<0的解集為( 。
A.(2,3)B.(-2,3)C.(-2,0)∪(2,3)D.(-∞,3)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進(jìn)行等價(jià)轉(zhuǎn)化即可.

解答 解:∵奇函數(shù)f(x)在(0,+∞)上為增函數(shù),又f(2)=0,
∴函數(shù)f(x)在(-∞,0)上為增函數(shù),且f(-2)=-f(2)=0,
∴函數(shù)f(x)的圖象如圖,
則不等式(x-3)f(x)<0等價(jià)為$\left\{\begin{array}{l}{x>3}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<3}\\{f(x)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>3}\\{0<x<2}\end{array}\right.$或$\left\{\begin{array}{l}{x<3}\\{-2<x<0或x>2}\end{array}\right.$,
即-2<x<0或2<x<3
即不等式的解集是(-2,0)∪(2,3),
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合,是函數(shù)性質(zhì)綜合考查題,熟練掌握奇偶性與單調(diào)性的對(duì)應(yīng)關(guān)系是解答的關(guān)鍵,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(3,4),若($\overrightarrow{a}$-$\overrightarrow$)∥(2$\overrightarrow{a}$+k$\overrightarrow$),則實(shí)數(shù)k的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{a}{3}$x3+cx(a,c∈R,a≠0).若a=-3,函數(shù)y=f(x)在[-2,2]的值域?yàn)閇-2,2],求函數(shù)y=f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,0<φ≤π)為奇函數(shù),且其圖象上相鄰的一個(gè)最高點(diǎn)與一個(gè)最低點(diǎn)之間的距離為$\sqrt{4+{π}^{2}}$.
(1)求f(x)的解析式;
(2)若f(α+$\frac{π}{3}$)=-$\frac{2}{3}$(-$\frac{π}{3}$<α<0),求sin(2α-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列命題中,正確的是( 。
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$
B.若$\overrightarrow{a}$與$\overrightarrow$共線,則存在惟一實(shí)數(shù)λ,使$\overrightarrow{a}$=$λ\overrightarrow$
C.若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$
D.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若α是第三象限角,則$\frac{π}{2}-α$是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知命題p:方程$\frac{x^2}{2m}-\frac{y^2}{m-1}=1$表示焦點(diǎn)在y軸上的橢圓,命題q:雙曲線$\frac{y^2}{5}-\frac{x^2}{m}=1$的離心率e∈(1,2),若p,q只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)全集U=R,已知A={x|x<0或x≥3},B={x|x≥-2},則A∩B的集合為( 。
A.[-2,3]B.[-2,0)C.[-2,0)∪[3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為$(\sqrt{3},0)$,則雙曲線C的方程$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案