18.已知sina+cosa=$\frac{\sqrt{3}}{2}$,且a∈(0,π),則sinacosa的值為( 。
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.±$\frac{1}{8}$D.-$\frac{1}{4}$

分析 已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡(jiǎn),整理即可求出sinαcosα的值.

解答 解:把sinα+cosα=$\frac{\sqrt{3}}{2}$,兩邊平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{3}{4}$,即2sinαcosα=-$\frac{1}{4}$,
則sinαcosα=-$\frac{1}{8}$,
故選:A.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)間基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=ex,則f′(0)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若銳角α、β滿足cosα>sinβ則下列各式正確的是( 。
A.α+β<$\frac{π}{2}$B.α+β=$\frac{π}{2}$C.α+β>$\frac{π}{2}$D.α>β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ex-2x+a有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx,其導(dǎo)函數(shù)為f′(x).
(1)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(2)若f′(1)=0,且${a}_{n+1}=f′(\frac{1}{{a}_{n}-n+1})$-n2+1,已知a1=4,求證:對(duì)任意n∈N+,都有an≥2n+2;
(3)在(2)的條件下,試比較$\frac{1}{1+{a}_{1}}+\frac{1}{1+{a}_{2}}+\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$與$\frac{2}{5}$的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若復(fù)數(shù) (m2-5m+6)+(m2-3m)i 是純虛數(shù)(i是虛數(shù)單位),則實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)已知關(guān)于x的實(shí)系數(shù)方程x2+mx+n=0,若1+$\sqrt{2}$i是方程x2+mx+n=0的一個(gè)復(fù)數(shù)根,求出m、n的值.
(2)已知z∈C,z+3i,$\frac{z}{3-i}$均為實(shí)數(shù),且復(fù)數(shù)(z+ai)2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=$\left\{\begin{array}{l}{f(x),}&{f(x)≤K}\\{K,}&{f(x)>K}\end{array}\right.$,其中函數(shù)f(x)=$\frac{lnx+1}{{e}^{x}}$,恒有fK(x)=f(x),則(  )
A.K的最大值為$\frac{1}{e}$B.K最小值為$\frac{1}{e}$C.K的最大值為2D.K的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx)-2sin2$\frac{ωx}{2}$+α(ω>0)的最小正周期為3π,當(dāng)x∈[0,π]時(shí),函數(shù)f(x)的最小值為0.
(I)求函數(shù)f(x)的表達(dá)式;
(II)若函數(shù)f(x)圖象向右平移m(m>0)個(gè)單位后所對(duì)應(yīng)的函數(shù)圖象是偶函數(shù)圖象,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案