A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 定義在R上的函數(shù)f(x)導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,且對(duì)于實(shí)數(shù)a,b (a<b)有f′(a)>0,f′(b)<0,可知:存在c,滿足:a<c<b,f′(c)=0;函數(shù)f(x)在區(qū)間(a,c)上單調(diào)遞增,在區(qū)間(c,b)上單調(diào)遞減.進(jìn)而即可判斷出.
解答 解:∵定義在R上的函數(shù)f(x)導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,
且對(duì)于實(shí)數(shù)a,b (a<b)有f′(a)>0,f′(b)<0,∴存在c,滿足:a<c<b,f′(c)=0.
∴函數(shù)f(x)在區(qū)間(a,c)上單調(diào)遞增,在區(qū)間(c,b)上單調(diào)遞減.
①?x0∈[a,b],f(x0)=0不一定正確;
②?x0∈[a,b],可知x0∈(c,b),且f(x0)>f(b),正確;
③?x0∈[a,b],若x0∈(c,b],則可能f(x0)<f(a),不一定正確;
④?x0∈[a,b],f(a)-f(b)>f′(x0)(a-b)正確,
若 $\frac{f(a)-f(b)}{a-b}$>0,而x0∈(c,b],f′(x0)<0.因此正確.
綜上可知:只有②④正確.
故選:B.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)、割線的斜率,考查了數(shù)形結(jié)合思想方法,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{7}\overrightarrow a+\frac{4}{7}\overrightarrow b$ | B. | $\frac{3}{7}\overrightarrow a-\frac{4}{7}\overrightarrow b$ | C. | $\frac{4}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ | D. | $\frac{4}{7}\overrightarrow a-\frac{3}{7}\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<2} | B. | {x|x<-1或x≥2} | C. | {x|x≥2} | D. | {x|x<-1或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com