16.定義在R上的函數(shù)f(x)及其導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,且對(duì)于實(shí)數(shù)a,b(a<b),有f′(a)>0,f′(b)<0.現(xiàn)給出如下結(jié)論:
①?x0∈[a,b],f(x0)=0;
②?x0∈[a,b],f(x0)>f(b);
③?x0∈[a,b],f(x0)≥f(a);
④?x0∈[a,b],f(a)-f(b)=f'(x0)(a-b).
其中結(jié)論正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 定義在R上的函數(shù)f(x)導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,且對(duì)于實(shí)數(shù)a,b (a<b)有f′(a)>0,f′(b)<0,可知:存在c,滿足:a<c<b,f′(c)=0;函數(shù)f(x)在區(qū)間(a,c)上單調(diào)遞增,在區(qū)間(c,b)上單調(diào)遞減.進(jìn)而即可判斷出.

解答 解:∵定義在R上的函數(shù)f(x)導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,
且對(duì)于實(shí)數(shù)a,b (a<b)有f′(a)>0,f′(b)<0,∴存在c,滿足:a<c<b,f′(c)=0.
∴函數(shù)f(x)在區(qū)間(a,c)上單調(diào)遞增,在區(qū)間(c,b)上單調(diào)遞減.
①?x0∈[a,b],f(x0)=0不一定正確;
②?x0∈[a,b],可知x0∈(c,b),且f(x0)>f(b),正確;
③?x0∈[a,b],若x0∈(c,b],則可能f(x0)<f(a),不一定正確;
④?x0∈[a,b],f(a)-f(b)>f′(x0)(a-b)正確,
若 $\frac{f(a)-f(b)}{a-b}$>0,而x0∈(c,b],f′(x0)<0.因此正確.
綜上可知:只有②④正確.
故選:B.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)、割線的斜率,考查了數(shù)形結(jié)合思想方法,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積等于7π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知傾斜角為α的直線l與直線x+2y-3=0垂直,則cos($\frac{2015π}{2}$+2α)的值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段OD上一點(diǎn),且DE=$\frac{1}{4}$OD,AE的延長(zhǎng)線交CD于F,若$\overrightarrow{AC}=\overrightarrow a,\overrightarrow{BD}=\overrightarrow b$,則$\overrightarrow{AF}$=( 。
A.$\frac{3}{7}\overrightarrow a+\frac{4}{7}\overrightarrow b$B.$\frac{3}{7}\overrightarrow a-\frac{4}{7}\overrightarrow b$C.$\frac{4}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$D.$\frac{4}{7}\overrightarrow a-\frac{3}{7}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=$\frac{1}{x-1}$的定義域與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若數(shù)列{an}是等比數(shù)列,Sn是其前n項(xiàng)和,且Sn=2n-a,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知曲線f(x)=x•lnx在點(diǎn)(1,f(1))處的切線與曲線y=x2+a相切,則a=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合A={x|x<-1或x>2},B={x|0≤x≤2},則A∩(∁RB)=( 。
A.{x|x<2}B.{x|x<-1或x≥2}C.{x|x≥2}D.{x|x<-1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=(x-2)ex+ax2+x,a∈R.
(1)當(dāng)$a=-\frac{1}{2}$時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≤0時(shí),f(x)≤-2總成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案