4.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段OD上一點(diǎn),且DE=$\frac{1}{4}$OD,AE的延長線交CD于F,若$\overrightarrow{AC}=\overrightarrow a,\overrightarrow{BD}=\overrightarrow b$,則$\overrightarrow{AF}$=(  )
A.$\frac{3}{7}\overrightarrow a+\frac{4}{7}\overrightarrow b$B.$\frac{3}{7}\overrightarrow a-\frac{4}{7}\overrightarrow b$C.$\frac{4}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$D.$\frac{4}{7}\overrightarrow a-\frac{3}{7}\overrightarrow b$

分析 根據(jù)兩個三角形相似對應(yīng)邊成比例,得到DF與FC之比,做FG平行BD交AC于點(diǎn)G,使用已知向量表示出要求的向量,得到結(jié)果.

解答 解:DF:BA═DE:BE=1:7;
作FG平行BD交AC于點(diǎn)G,
∴FG:DO=6:7,CG:CO=6:7,
∴$\overrightarrow{GF}$=$\frac{6}{14}$$\overrightarrow{BD}$=$\frac{6}{14}$$\overrightarrow$=$\frac{3}{7}$$\overrightarrow$,
∵$\overrightarrow{AG}$=$\overrightarrow{AO}$+$\overrightarrow{OG}$=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{14}$$\overrightarrow{a}$=$\frac{4}{7}$$\overrightarrow{a}$,
∴$\overrightarrow{AF}$=$\overrightarrow{AG}$+$\overrightarrow{GF}$=$\frac{4}{7}$$\overrightarrow{a}$+$\frac{3}{7}$$\overrightarrow$,
故答案為:C.

點(diǎn)評 本題考查向量的加減運(yùn)算,考查相似三角性質(zhì)的應(yīng)用,考試數(shù)形結(jié)合,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義函數(shù):F(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{1,x<0}\end{array}\right.$,以下命題正確的是②③.
①F(a)F(b)=F(a)+F(b);
②$\frac{F(a)}{F(b)}$≤F(a-b);
③F(a)+F(b)≥2F($\frac{a+b}{2}$)
④F(ab)=F(a)F(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.長方體A1B1C1D1-ABCD中,AB=AD=2,A1A=2$\sqrt{6}$,M為棱C1C的中點(diǎn),C1D與D1C交于點(diǎn)N,求證:AM⊥A1N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知sin($\frac{π}{2}$+θ)=-$\frac{1}{2}$,則2sin2$\frac{θ}{2}$-1( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,最小值為2的是( 。
A.$y=x+\frac{1}{x}$B.$y=lgx+\frac{1}{lgx}(1<x<10)$
C.$y=sinx+\frac{2}{sinx}(0<x<\frac{π}{2})$D.y=3x+3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=alnx-$\frac{x}$,g(x)=-3x+4.
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線為2x-y-3=0,求a,b的值;
(2)若b=-1,當(dāng)x≥1時,f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:對于一切正整數(shù)n,恒有$\frac{2}{4×{1}^{2}-1}$+$\frac{3}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的函數(shù)f(x)及其導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,且對于實(shí)數(shù)a,b(a<b),有f′(a)>0,f′(b)<0.現(xiàn)給出如下結(jié)論:
①?x0∈[a,b],f(x0)=0;
②?x0∈[a,b],f(x0)>f(b);
③?x0∈[a,b],f(x0)≥f(a);
④?x0∈[a,b],f(a)-f(b)=f'(x0)(a-b).
其中結(jié)論正確的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=$\frac{40}{3x+5}$(1≤x≤10),設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)隔熱層修建多厚對,總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正四面體ABCD的棱長為$\sqrt{2}$,則其外接球的體積為( 。
A.$\frac{4}{3}$πB.$\frac{{\sqrt{2}}}{3}$πC.$\frac{{\sqrt{3}}}{2}$πD.

查看答案和解析>>

同步練習(xí)冊答案