【題目】如圖,在三棱柱中,已知是直角三角形,側(cè)面是矩形,,,.
(1)證明:.
(2)是棱的中點,求直線與平面所成角的正弦值.
【答案】(1)見解析(2)
【解析】
(1)根據(jù)是直角三角形,,得到,再根據(jù)側(cè)面是矩形,得到,然后利用線面垂直的判定定理得到平面,從而,在平行四邊形中,得到,再利用線面垂直的判定定理得到平面即可.
(2)根據(jù)(1)以為坐標(biāo)原點,分別以,,為軸,軸,軸的正方向建立空間直角坐標(biāo)系,求得平面的一個法向量,的坐標(biāo),由線面角的向量公式求解.
(1)證明:因為是直角三角形,,
所以.
因為側(cè)面是矩形,所以.
因為,所以平面,
從而.
因為,,,
所以,即.
因為,
所以平面.
所以.
(2)由(1)知,以為坐標(biāo)原點,分別以,,為軸,軸,軸的正方向建立空間直角坐標(biāo)系,
則,,,,.
設(shè)平面的一個法向量為,
由,得
令,得.
又,
設(shè)直線與平面所成角的大小為,
則,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是等腰梯形,,,是等邊三角形,點在上,且.
(1)證明://平面.
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的歸家之一,某市為了制訂合理的節(jié)水方案,對家庭用水情況進(jìn)行了抽樣調(diào)查,獲得了某年100個家庭的月均用水量(單位:)的數(shù)據(jù),將這些數(shù)據(jù)按照,,,,,,,,分成9組,制成了如圖所示的頻率分布直方圖.
(1)求圖中的值,若該市有30萬個家庭,試估計全市月均用水量不低于的家庭數(shù);
(2)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,試估計全市家庭月均用水量的平均數(shù);
(3)現(xiàn)從月均用水量在,的家庭中,先按照分層抽樣的方法抽取9個家庭,再從這9家庭中抽取4個家庭,記這4個家庭中月均用水量在中的數(shù)量為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國新型冠狀病毒肺炎疫情期間,以網(wǎng)絡(luò)購物和網(wǎng)上服務(wù)所代表的新興消費展現(xiàn)出了強大的生命力,新興消費將成為我國消費增長的新動能.某市為了了解本地居民在2020年2月至3月兩個月網(wǎng)絡(luò)購物消費情況,在網(wǎng)上隨機對1000人做了問卷調(diào)查,得如下頻數(shù)分布表:
網(wǎng)購消費情況(元) | |||||
頻數(shù) | 300 | 400 | 180 | 60 | 60 |
(1)作出這些數(shù)據(jù)的頻率分布直方圖,并估計本市居民此期間網(wǎng)絡(luò)購物的消費平均值;
(2)在調(diào)查問卷中有一項是填寫本人年齡,為研究網(wǎng)購金額和網(wǎng)購人年齡的關(guān)系,以網(wǎng)購金額是否超過4000元為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000人中抽取200人,得到如下列聯(lián)表,請將表補充完整并根據(jù)列聯(lián)表判斷,在此期間是否有95%的把握認(rèn)為網(wǎng)購金額與網(wǎng)購人年齡有關(guān).
網(wǎng)購不超過4000元 | 網(wǎng)購超過4000元 | 總計 | |
40歲以上 | 75 | 100 | |
40歲以下(含40歲) | |||
總計 | 200 |
參考公式和數(shù)據(jù):.(其中為樣本容量)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且點在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點的直線與橢圓交于,兩點,在直線上存在點,使三角形為正三角形,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com