分析 (1)求函數(shù)的導數(shù),根據(jù)導函數(shù)f′(x)為偶函數(shù)以及到是的幾何意義,建立方程關(guān)系即可確定a,b的值
(2)當c=1時,求函數(shù)的導數(shù),得到f′(x)>0,即可判斷f(x)的單調(diào)性
(3)若f(x)有極值,求函數(shù)的導數(shù),討論c的取值范圍即可,求c的取值范圍.
解答 解:(1)函數(shù)的導數(shù)f′(x)=aex+be-x-c,
∵f′(x)為偶函數(shù),∴f′(-x)=f′(x),
即ae-x+bex-c=aex+be-x-c,
即(a-b)(ex-be-x)=0恒成立,則a-b=0,即a=b.
∵y=f(x)在點(0,f(0))處的切線的斜率為2-c
∴f′(0)=a+b-c=2a-c=2-c,
∴2a=2,a=1,
則a=1,b=1.
(2)當c=1時,f(x)=ex-e-x-x,
f′(x)=ex+e-x-1≥2$\sqrt{{e}^{x}{e}^{-x}}$-1=2-1=1>0,
∴f(x)在R上單調(diào)遞增.
(3)f′(x)=ex+e-x-c,
而ex+e-x≥2$\sqrt{{e}^{x}{e}^{-x}}$=2,當x=0時取等號,
下面分三種情況討論,
①當c<2時,f′(x)=ex+e-x-c≥2-c>0恒成立,此時函數(shù)單調(diào)遞增,無極值,不滿足條件.
②當c=2時,對任意的x≠0時,f′(x)=ex+e-x-c≥2-c>0恒成立,此時函數(shù)單調(diào)遞增,無極值,不滿足條件.
③當c>2時,令t=ex,則由f′(x)=ex+e-x-c=t+$\frac{1}{t}$-c=0,即t2-ct+1=0有兩個根,
t1=$\frac{c-\sqrt{{c}^{2}-4}}{2}$<t2=$\frac{c+\sqrt{{c}^{2}-4}}{2}$,
∴f′(x)=0有兩個根x1=lnt1,x2=lnt2,
當x1<x<x2時,f′(x)<0,
當x>x2時,f′(x)>0,從而f(x)在x=x2取得極小值,
綜上若f(x)有極值,則c的取值范圍(2,+∞).
點評 本題主要考查導數(shù)和函數(shù)的綜合應用,涉及導數(shù)的計算,導數(shù)的幾何意義,函數(shù)單調(diào)性和導數(shù)之間的關(guān)系以及函數(shù)極值和導數(shù)的關(guān)系,利用分類討論以及基本不等式的性質(zhì)是解決本題的關(guān)鍵.綜合性較強,運算量較大.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com