A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
分析 根據(jù)函數(shù)奇偶性的性質(zhì)建立方程進(jìn)行求解即可.
解答 解:∵f(x)=ax2+bx是定義在[2a,a+1]的偶函數(shù),
∴定義域關(guān)于原點對稱,則2a+a+1=0,即3a+1=0,
得a=-$\frac{1}{3}$,
同時f(-x)=f(x),
則ax2-bx=ax2+bx,
即-b=b,得b=0,
則a+b=-$\frac{1}{3}$,
故選:A.
點評 本題主要考查一元二次函數(shù)的性質(zhì)以及函數(shù)奇偶性的性質(zhì),利用函數(shù)奇偶性的定義建立方程關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=cos(2x-\frac{π}{3})\;\;x∈R$ | B. | $y=cos(\frac{x}{2}+\frac{π}{3})\;\;x∈R$ | ||
C. | $y=cos(2x+\frac{π}{3})\;\;x∈R$ | D. | $y=cos(2x+\frac{2}{3}π)\;\;x∈R$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com