20.若函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x-1}+1(x<2)}\\{lo{g}_{3}(x+2)(x≥2)}\end{array}\right.$,則f(7)+f(log36)=5.

分析 由已知條件利用分段函數(shù)性質(zhì)直接求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{3}^{x-1}+1(x<2)}\\{lo{g}_{3}(x+2)(x≥2)}\end{array}\right.$,
∴f(7)=log39=2,
f(log36)=${3}^{lo{g}_{3}6-1}$+1=$\frac{6}{3}+1=3$,
∴f(7)+f(log36)=2+3=5.
故答案為:5.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在3張獎(jiǎng)券中,一等獎(jiǎng)、二等獎(jiǎng)各有1張,另1張無(wú)獎(jiǎng).甲、乙兩人各抽取1張,則恰有一人獲獎(jiǎng)的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.三棱錐P-ABC中,△ABC和△PBC是等邊三角形,側(cè)面PBC⊥面ABC,AB=2$\sqrt{3}$,則三棱錐外接球表面積是(  )
A.18πB.19πC.20πD.21π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義一種運(yùn)算:$|\left.\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}\right.|$=a1•a4-a2•a3,那么函數(shù)f(x)=$|\left.\begin{array}{l}{\sqrt{3}}&{cosx}\\{1}&{sinx}\end{array}\right.|$的圖象向左平移k(k>0)個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則k的最小值應(yīng)為( 。
A.$\frac{2π}{3}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{2π}{3}$的單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.i是虛數(shù)單位,復(fù)數(shù)z滿足(z-2i)(2-i)=5,則z=2+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,則f(f($\frac{π}{2}$))=-$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.(x-2y)3(x+y)4的展開(kāi)式中x3y4項(xiàng)的系數(shù)是(  )
A.3B.12C.17D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長(zhǎng)度的集合,則(  )
A.$\sqrt{5}∈A$B.$\sqrt{11}∈A$C.$\sqrt{7}∈A$D.4∈A

查看答案和解析>>

同步練習(xí)冊(cè)答案