9.拋物線y=$\frac{1}{8}$x2上一點M到焦點的距離為4,則點M的縱坐標為( 。
A.1B.2C.3D.4

分析 將拋物線的方程化為標準方程,求得焦點和準線方程,運用拋物線的定義,可得M的縱坐標.

解答 解:拋物線y=$\frac{1}{8}$x2即為x2=8y,
焦點F為(0,2),準線為y=-2,
由拋物線定義可得|MF|=yM+2,
由題意可得yM+2=4,
解得yM=2,
故選:D.

點評 本題考查拋物線的定義、方程和性質(zhì),考查定義法的運用,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.三個數(shù)a=0.33,b=log${\;}_{\frac{1}{5}}$3,c=30.3之間的大小關(guān)系是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知平面直角坐標系內(nèi)三點A,B,C在一條直線上,滿足$\overrightarrow{OA}$=(-2,m),$\overrightarrow{OB}$=(n,1),$\overrightarrow{OC}$=(5,-1),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O為坐標原點.
(1)求實數(shù)m,n的值;
(2)設(shè)△OAC的垂心為G,且$\overrightarrow{OB}$=$\frac{3}{2}$$\overrightarrow{OG}$,試求∠AOC的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某地一天中6時至14時的溫度變化曲線近似滿足函數(shù)T=Asin(ωt+φ)+B(其中$\frac{π}{2}$<φ<π)6時至14時期間的溫度變化曲線如圖所示,它是上述函數(shù)的半個周期的圖象,那么圖中曲線對應(yīng)的函數(shù)解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知正項數(shù)列{an}的前n項和為Sn,且Sn,an,2成等差數(shù)列.
(I)證明數(shù)列{an}是等比數(shù)列;
(Ⅱ)求$\frac{1}{{a}_{1}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{5}}+$…$+\frac{1}{{a}_{2n-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知命題p:f(x)=$\frac{1}{2}$sinx+$\frac{1}{2}$+k(x∈R,k>0),3≤f(x)≤6恒成立,命題q:方程$\frac{{x}^{2}}{4-k}$-$\frac{{y}^{2}}{k}$=1表示焦點在x軸上的雙曲線,若p∧q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,在平面四邊形ABCD中,AB⊥AD,∠ADC=$\frac{2π}{3}$,E為AD邊上一點,CE=$\sqrt{7}$,DE=1,AE=2,∠BEC=$\frac{π}{3}$.
(Ⅰ)求sin∠CED的值;
(Ⅱ)求BE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.x+y+z+w=100,求這個方程組的自然數(shù)解的組數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時滿足以下條件:
①f(x)在(-∞,-1)上是增函數(shù),在(-1,0)上是減函數(shù);
②f(x)的導(dǎo)函數(shù)是偶函;
③f(x)在x=0處的切線與第一、三象限的角平分線垂直.
求函數(shù)y=f(x)的解析式.

查看答案和解析>>

同步練習冊答案