7.已知實(shí)數(shù)變量x,y滿足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,則z=3x-y的最大值為( 。
A.1B.2C.3D.4

分析 先畫出滿足條件的平面區(qū)域,將z=3x-y變形為:y=3x-z,由直線y=3x平移到A(2,2)時(shí),z最大.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由z=3x-y得:y=3x-z,
由$\left\{\begin{array}{l}{x-y=0}\\{2x-y-2=0}\end{array}\right.$,解得:A(2,2),
顯然直線y=3x-z過A(2,2)時(shí),z最大,
Z最大值=2×3-2=4,
故選:D.

點(diǎn)評(píng) 本題考察了簡(jiǎn)單的線性規(guī)劃問題,考察數(shù)形結(jié)合,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{3x-y≥0}\end{array}}\right.$,則3x+y的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.8cm3B.12cm3C.$\frac{32}{3}c{m^3}$D.$\frac{40}{3}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則y≥x的概率為( 。
A.$\frac{3}{4}$+$\frac{1}{2π}$B.$\frac{1}{2}$+$\frac{1}{π}$C.$\frac{1}{4}$-$\frac{1}{2π}$D.$\frac{1}{2}$-$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過右焦點(diǎn)F2,且斜率為k(k≠0)的直線l與橢圓C相交于M,N兩點(diǎn),△MNF1的周長(zhǎng)是8.
(1)求橢圓C的方程;
(2)橢圓右頂點(diǎn)為A,直線MA,NA分別交直線l':x=5于點(diǎn)P,Q,線段PQ的中點(diǎn)為R,記直線F1R的斜率為k',求證kk'為定值,并求這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知2Sn=3n+3.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn},滿足anbn=log3an,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率是$\frac{\sqrt{2}}{2}$,過點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A、B兩點(diǎn),當(dāng)直線l平行于x軸時(shí),直線l被橢圓E截得的線段長(zhǎng)為2$\sqrt{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)在平面直角坐標(biāo)系xOy中,是否存在與點(diǎn)P不同的定點(diǎn)Q,使得$\frac{|QA|}{|QB|}=\frac{|PA|}{|PB|}$恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè) a為實(shí)數(shù),函數(shù) f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范圍;
(2)討論 f(x)的單調(diào)性;
(3)當(dāng)a≥2 時(shí),討論f(x)+$\frac{4}{x}$ 在區(qū)間 (0,+∞)內(nèi)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“x>1”是“$lo{g_{\frac{1}{2}}}$(x+2)<0”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案