13.設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則y≥x的概率為( 。
A.$\frac{3}{4}$+$\frac{1}{2π}$B.$\frac{1}{2}$+$\frac{1}{π}$C.$\frac{1}{4}$-$\frac{1}{2π}$D.$\frac{1}{2}$-$\frac{1}{π}$

分析 判斷復(fù)數(shù)對(duì)應(yīng)點(diǎn)圖形,利用幾何概型求解即可.

解答 解:復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,它的幾何意義是以(1,0)為圓心,1為半徑的圓以及內(nèi)部部分.y≥x的圖形是圖形中陰影部分,如圖:

復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則y≥x的概率:$\frac{\frac{1}{4}π-\frac{1}{2}×1×1}{π}$=$\frac{1}{4}-\frac{1}{2π}$.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的幾何意義,幾何概型的求法,考查計(jì)算能力以及數(shù)形結(jié)合的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.一個(gè)圓經(jīng)過(guò)橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1的三個(gè)頂點(diǎn).且圓心在x軸的正半軸上.則該圓標(biāo)準(zhǔn)方程為(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在圓O中,M、N是弦AB的三等分點(diǎn),弦CD,CE分別經(jīng)過(guò)點(diǎn)M,N,若CM=2,MD=4,CN=3,則線段NE的長(zhǎng)為(  )
A.$\frac{8}{3}$B.3C.$\frac{10}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.雙曲線$\frac{{x}^{2}}{2}$-y2=1的焦距是2$\sqrt{3}$,漸近線方程是y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x2+ax+b(a,b∈R),記M(a,b)是|f(x)|在區(qū)間[-1,1]上的最大值.
(1)證明:當(dāng)|a|≥2時(shí),M(a,b)≥2;
(2)當(dāng)a,b滿足M(a,b)≤2時(shí),求|a|+|b|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.i是虛數(shù)單位,計(jì)算$\frac{1-2i}{2+i}$的結(jié)果為-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知實(shí)數(shù)變量x,y滿足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,則z=3x-y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x3+ax2+b(a,b∈R).
(1)試討論f(x)的單調(diào)性;
(2)若b=c-a(實(shí)數(shù)c是與a無(wú)關(guān)的常數(shù)),當(dāng)函數(shù)f(x)有三個(gè)不同的零點(diǎn)時(shí),a的取值范圍恰好是(-∞,-3)∪(1,$\frac{3}{2}$)∪($\frac{3}{2}$,+∞),求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.一種畫(huà)橢圓的工具如圖1所示.O是滑槽AB的中點(diǎn),短桿ON可繞O轉(zhuǎn)動(dòng),長(zhǎng)桿MN通過(guò)N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動(dòng),且DN=ON=1,MN=3,當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)N繞O轉(zhuǎn)動(dòng),M處的筆尖畫(huà)出的橢圓記為C,以O(shè)為原點(diǎn),AB所在的直線為x軸建立如圖2所示的平面直角坐標(biāo)系.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線l與兩定直線l1:x-2y=0和l2:x+2y=0分別交于P,Q兩點(diǎn).若直線l總與橢圓C有且只有一個(gè)公共點(diǎn),試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案