A. | $(1+\sqrt{2},+∞)$ | B. | $(1,1+\sqrt{2})$ | C. | (2,+∞) | D. | $(2,1+\sqrt{2})$ |
分析 利用雙曲線的對稱性及∠AEB是鈍角,得到AF>EF,求出AF,CF得到關(guān)于a,b,c的不等式,求出離心率的范圍.
解答 解:∵雙曲線關(guān)于x軸對稱,且直線AB垂直x軸
∴∠AEF=∠BEF
∵∠AEB是鈍角,
∴AF>EF
∵F為右焦點,過F且垂直于x軸的直線與雙曲線交于A、B兩點,
∴AF=$\frac{^{2}}{a}$,
∵EF=a+c
∴$\frac{^{2}}{a}$>a+c,即c2-ac-2a2>0
解得$\frac{c}{a}$>2或$\frac{c}{a}$<-1
雙曲線的離心率的范圍是(2,+∞)
故選:C.
點評 本題考查雙曲線的對稱性、考查雙曲線的三參數(shù)關(guān)系:c2=a2+b2、考查雙曲線的離心率問題就是研究三參數(shù)a,b,c的關(guān)系.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}+\frac{2}{5}i$ | B. | $-\frac{1}{5}+\frac{2}{5}i$ | C. | 1-2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | 4 | C. | $\frac{16}{3}$ | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com