11.已知直線l的方向向量為$\overrightarrow{a}$=(-1,0,1),點A(1,2,-1)在l上,則點P(2,-1,2)到直線l的距離為$\sqrt{17}$.

分析 求出$\overrightarrow{PA}$=(-1,3,-3),sin<$\overrightarrow{a}$,$\overrightarrow{PA}$>=$\sqrt{\frac{17}{19}}$,即可求出點P(2,-1,2)到直線l的距離.

解答 解:由題意,$\overrightarrow{PA}$=(-1,3,-3),
∵$\overrightarrow{a}$=(-1,0,1),
∴cos<$\overrightarrow{a}$,$\overrightarrow{PA}$>=$\frac{1-3}{\sqrt{1+9+9}•\sqrt{2}}$=-$\frac{2}{\sqrt{38}}$,
∴sin<$\overrightarrow{a}$,$\overrightarrow{PA}$>=$\sqrt{\frac{17}{19}}$,
∵|$\overrightarrow{PA}$|=$\sqrt{19}$,
∴P(2,-1,2)到直線l的距離為$\sqrt{17}$.
故答案為:$\sqrt{17}$.

點評 本題考查點P(2,-1,2)到直線l的距離,考查向量的數(shù)量積公式,考查學(xué)生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.正三棱柱ABC-A1B1C1中,AB=BB1,D是BC的中點.
(1)求直線BB1與平面AC1D所成的余弦值;
(2)求二面角A1-AC1-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等比數(shù)列{an}的前n項和為Sn,若a1=1,a4=-8,則S5等于( 。
A.-11B.11C.31D.-31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“sin2θ<0”是“tanθ<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點F1,F(xiàn)2其離心率為e=$\frac{1}{2}$,點P為橢圓上的一個動點,△PF1F2內(nèi)切圓面積的最大值為$\frac{4π}{3}$.
(1)求a,b的值
(2)若A、B、C、D是橢圓上不重合的四個點,且滿足$\overrightarrow{{F}_{1}A}$∥$\overrightarrow{{F}_{1}C}$,$\overrightarrow{{F}_{1}B}$∥$\overrightarrow{{F}_{1}D}$,$\overrightarrow{AC}$•$\overrightarrow{BD}$=0,求|$\overrightarrow{AC}$|+|$\overrightarrow{BD}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:在x∈[1,2]內(nèi),不等式x2-ax+2<0恒成立;命題q:函數(shù)f(x)=x2-2ax+3a是區(qū)間(-∞,1]上的減函數(shù),若命題“p或q”是真命題,“p且q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲、乙兩位同學(xué)在5次考試中的數(shù)學(xué)成績用莖葉圖表示如圖,中間一列的數(shù)字表示數(shù)學(xué)成績的十位數(shù)字,兩邊的數(shù)字表示數(shù)學(xué)成績的個位數(shù)字.若甲、乙兩人的平均成績分別是$\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,則下列說法正確的是( 。
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定B.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定
C.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定D.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)U={0,1,2,3,4},A={0,1,2},B={0,1,2,3},則A∩(∁UB)等于( 。
A.{0,3}B.{4}C.{0,1,2}D.φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A、B、C的對邊分別為a、b、c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=2,則△ABC的面積的最大值為$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案