8.畫出函數(shù)y=$\left\{\begin{array}{l}{lg(x+1),x>-1}\\{lg\frac{1}{-x-1},x<-1}\end{array}\right.$的圖象.

分析 分段,利用圖象變換,即可作出函數(shù)的圖象.

解答 解:x>-1,y=lg(x+1)是由y=lgx向左平移1個單位得到,
x<-1,y=-lg(-x-1)是由y=lg(-x)向左平移1個單位,再作出關(guān)于x軸的對稱圖象得到.
如圖所示

點(diǎn)評 本題考查函數(shù)的圖象,考查學(xué)生的作圖能力,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知各項(xiàng)不為零的等差數(shù)列{an}的公差d≠0,若刪去a2,a3,a4,a5的某一項(xiàng),剩余3項(xiàng)得到的數(shù)列(按原來的順序)是等比數(shù)列,則$\frac{{a}_{1}}587ru1g$的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足cosA=$\frac{\sqrt{10}}{10}$,a2+b2-c2=$\frac{2\sqrt{5}}{5}$ab.
(I)求角B;
(Ⅱ)設(shè)b=10,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)y=f(x)=$\left\{\begin{array}{l}{2\sqrt{x},0≤x≤1}\\{1+x,x>1}\end{array}\right.$,求f($\frac{1}{2}$)及f($\frac{1}{t}$),并寫出定義域及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知α=-800°.
(1)把α改寫成β+2kπ(k∈Z,0≤β<2π)的形式,并指出α是第幾象限角;
(2)求角γ,使γ與角α的終邊相同,且γ∈(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求所有與所給角終邊相同的角的集合.并求出其中的最小正角和最大負(fù)角.
(1)-210°;
(2)-1484°37′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.寫出下列函數(shù)的單調(diào)區(qū)間:
(1)y=-$\frac{2}{3}$cosx;
(2)y=sin(x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.y=$\frac{sinx}{|sinx|}-\frac{cosx}{|cosx|}$(x∈R,且x≠$\frac{kπ}{2}$,k∈Z)的值域是(  )
A.[-2,2]B.{-2,2}C.{0,2}D.{-2,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示的圖形由兩個等腰直角三角形和一個正方形組成,且正方形的邊長為2,直線x=t(0<t≤4)從左到右掃過圖形的面積為S=f(t),如f(0.5)=0.25,f(4)=6
(1)求S=f(t)的解析式;
(2)求$g(t)=\frac{f(t)}{t^2}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案