20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,則下列關(guān)于函數(shù)y=f[f(x)]-$\frac{3}{2}$的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。
A.當(dāng)k≥0時(shí),有1個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
B.當(dāng)k≥0時(shí),沒有零點(diǎn);當(dāng)-$\frac{1}{2}$<k≤-$\frac{1}{4}$時(shí),有3個(gè)零點(diǎn),當(dāng)k≤-$\frac{1}{2}$或-$\frac{1}{4}$<k<0有2個(gè)零點(diǎn)
C.當(dāng)k≥0時(shí),沒有零點(diǎn);當(dāng)-$\frac{1}{2}$<k<0時(shí),有3個(gè)零點(diǎn),當(dāng)k≤-$\frac{1}{2}$有2個(gè)零點(diǎn)
D.當(dāng)k≥0時(shí),沒有零點(diǎn);當(dāng)-$\frac{1}{2}$≤k<-$\frac{1}{4}$時(shí),有3個(gè)零點(diǎn),當(dāng)k<-$\frac{1}{2}$或-$\frac{1}{4}$≤k<0有2個(gè)零點(diǎn)

分析 因?yàn)楹瘮?shù)f(x)為分段函數(shù),函數(shù)y=f[f(x)]-$\frac{3}{2}$為復(fù)合函數(shù),故需要分類討論,最后綜合討論結(jié)果,得到答案.

解答 解:①若k≥0,
當(dāng)x≥0時(shí),f(x)≥2,此時(shí)y=f[f(x)]-$\frac{3}{2}$=$\frac{1}{2}$恒成立,
當(dāng)x<0時(shí),f(x)>1,此時(shí)y=f[f(x)]-$\frac{3}{2}$=$\frac{1}{2}$恒成立,
即當(dāng)k≥0時(shí),沒有零點(diǎn);
②k<0時(shí),
函數(shù)f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$的圖象如下圖所示:

令y=f[f(x)]-$\frac{3}{2}$=0,
即f[f(x)]=$\frac{3}{2}$,
則f(x)=${log}_{\frac{1}{2}}\frac{3}{2}$,或f(x)=$\frac{-1}{2k}$
令f(x)=${log}_{\frac{1}{2}}\frac{3}{2}$,此時(shí)存在一個(gè)x滿足要求;
令f(x)=$\frac{-1}{2k}$,
若0<$\frac{-1}{2k}$≤1,即k≤$-\frac{1}{2}$時(shí),此時(shí)存在一個(gè)x滿足要求;則函數(shù)y=f[f(x)]-$\frac{3}{2}$有兩個(gè)零點(diǎn);
若1<$\frac{-1}{2k}$≤2,即$-\frac{1}{2}$<k≤$-\frac{1}{4}$時(shí),此時(shí)存在兩個(gè)x滿足要求;則函數(shù)y=f[f(x)]-$\frac{3}{2}$有三個(gè)零點(diǎn);
若$\frac{-1}{2k}$>2,即$-\frac{1}{4}$<k<0時(shí),此時(shí)存在一個(gè)x滿足要求;則函數(shù)y=f[f(x)]-$\frac{3}{2}$有兩個(gè)零點(diǎn);
綜上可得:當(dāng)k≥0時(shí),沒有零點(diǎn);當(dāng)-$\frac{1}{2}$≤k<-$\frac{1}{4}$時(shí),有3個(gè)零點(diǎn),當(dāng)k<-$\frac{1}{2}$或-$\frac{1}{4}$≤k<0有2個(gè)零點(diǎn),
故選:D.

點(diǎn)評 本題考查分段函數(shù),考查復(fù)合函數(shù)的零點(diǎn),解題的關(guān)鍵是利用數(shù)形結(jié)合以及分類討論確定方程f[f(x)]=$\frac{3}{2}$的根的個(gè)數(shù),利用數(shù)形結(jié)合法是解決本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)命題p:“若$sinα=\frac{1}{2}$,則$α=\frac{π}{6}$”,命題q:“若a>b,則$\frac{1}{a}<\frac{1}$”,則( 。
A.“p∧q”為真命題B.“p∨q”為假命題C.“¬q”為假命題D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a≥0,b≥0,a2+b2=1,求證:ab+b≥$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示的封閉區(qū)域的邊界是由兩個(gè)關(guān)于x軸對稱的半圓與截取于同一雙曲線的兩段曲線組合而成的,其中上半圓所在圓的方程是x2+y2-4y-4=0,雙曲線的左右頂點(diǎn)A、B是該圓與x軸的交點(diǎn),雙曲線與該圓的另兩個(gè)交點(diǎn)是該圓平行于x軸的一條直徑的兩個(gè)端點(diǎn).
(1)求雙曲線的方程;
(2)記雙曲線的左、右焦點(diǎn)為F1、F2,試在封閉區(qū)域的邊界上求點(diǎn)P,使得∠F1PF2是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\sqrt{2}$,一條準(zhǔn)線方程為x=$\frac{\sqrt{2}}{2}$,直線l與雙曲線右支及雙曲線的漸近線交于A、B、C、D四點(diǎn),四個(gè)點(diǎn)的順序如圖所示.
(1)求該雙曲線的方程;
(2)求證:|AB|=|CD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.己知f(x),g(x)都是定義在R上的函數(shù),并滿足f(x)=ax•g(x)(a>0,且a≠1)和f(x)•g′(x)>f′(x)•g(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,則a的值為( 。
A.$\frac{1}{2}$B.2C.$\frac{5}{4}$D.2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)代產(chǎn)品的銷售離不開廣告的促銷活動(dòng),某公司代理一種國際品牌智能環(huán)境檢測設(shè)備,其廣告費(fèi)用x(單位:萬元)與年銷售量t(單位:件)的統(tǒng)計(jì)數(shù)據(jù)如表所示:
廣告費(fèi)用x(萬元) 3 4 5 6
 年銷售量t(件) 25 30 4045
這里所給出的數(shù)據(jù)表示t對x呈線性回歸關(guān)系$\stackrel{∧}{t}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.
[參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$].
(1)根據(jù)所給數(shù)據(jù)求出線性回歸方程;
(2)將(1)中的$\stackrel{∧}{t}$近似地看作產(chǎn)品的實(shí)際年銷售量t,若該產(chǎn)品的銷售單價(jià)g(x)(單位:萬元)與廣告費(fèi)x的近似關(guān)系是g(x)=$\left\{\begin{array}{l}{17-2x(x∈{N}^{*},且1≤x≤5)}\\{6-\frac{2}{x}(x∈{N}^{*},且6≤x≤10)}\end{array}\right.$試問當(dāng)公司投入廣告費(fèi)用多少萬元時(shí),公司每年獲得的銷售收入最大,最大銷售收入是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊分別為a,b,c.已知,A+3C=π.
(1)若$\frac{c}$=$\sqrt{3}$,求角C;
(2)若△ABC為銳角三角形,求cosB取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.當(dāng)0<x≤$\frac{π}{4}$時(shí),求函數(shù)f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$-$\frac{cosx}{sinx}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案