8.如圖,$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$的終點A、B、C在一條直線上,且$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,則以下等式成立的是( 。
A.$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{3}{2}$$\overrightarrow{OB}$B.$\overrightarrow{OC}$=-$\overrightarrow{OA}$+2$\overrightarrow{OB}$C.$\overrightarrow{OC}$=$\frac{3}{2}$$\overrightarrow{OA}$-$\frac{1}{2}$$\overrightarrow{OB}$D.$\overrightarrow{OC}$=$\overrightarrow{OA}$-2$\overrightarrow{OB}$

分析 利用向量的三角形法則即可得出.

解答 解:如圖所示
∵$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,
∴$\overrightarrow{OC}-\overrightarrow{OA}$=-3$(\overrightarrow{OB}-\overrightarrow{OC})$,
可得:$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{3}{2}$$\overrightarrow{OB}$.
故選:A.

點評 本題考查了向量的三角形法則、線性運算,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知拋物線M:x2=4y,圓C:x2+(y-3)2=4,在拋物線M上任取一點P,向圓C作兩條切線PA和PB,切點分別為A,B,則$\overrightarrow{CA}•\overrightarrow{CB}$的最大值為( 。
A.$-\frac{4}{9}$B.$-\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出S的值為8,則n的最小正整數(shù)為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且sin(A-B)+sinC=1.
(1)求sinAcosB的值;
(2)若a=2b,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知等差數(shù)列{an}中,a1+a3+a5=105,a4=33,則a20等于( 。
A.-1B.1C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,正四棱錐P-ABCD中,AB=2,PA=$\sqrt{5}$.
(1)求側(cè)面PAD與側(cè)面PBC所成二面角的大;
(2)在直線PA上是否存在點E,使CE⊥平面PAD.若存在,指出點E的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.為應(yīng)對我國人口老齡化問題,某研究院設(shè)計了延遲退休方案,第一步:2017年女干部和女工人退休年齡統(tǒng)一規(guī)定為55歲;第二步:從2018年開始,女性退休年齡每3年延遲1歲,至2045年時,退休年齡統(tǒng)一規(guī)定為65歲,小明的母親是出生于1964年女干部,據(jù)此方案,她退休的年份是2020年.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等差數(shù)列{log3(an-1)}(n∈N*)的前n項和為Sn,且a2=10,S7=28.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設(shè)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+1,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,若f(a)=3,則a=4.

查看答案和解析>>

同步練習冊答案