分析 (1)直線l的極坐標(biāo)方程為ρsinθ-4ρcosθ+2=0,利用互化公式可得直角坐標(biāo)方程.曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4{t}^{2}}\end{array}\right.$ (t∈R),消去參數(shù)t可得普通方程.
(2)設(shè)B(t,4t2),可得點(diǎn)B到直線l的距離d=$\frac{4(t-\frac{1}{2})^{2}+1}{\sqrt{17}}$,利用二次函數(shù)的單調(diào)性即可得出.
解答 解:(1)直線l的極坐標(biāo)方程為ρsinθ-4ρcosθ+2=0,
可得直角坐標(biāo)方程:y-4x+2=0.
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4{t}^{2}}\end{array}\right.$ (t∈R),
消去參數(shù)t可得普通方程:y=4x2.
(2)設(shè)B(t,4t2),
可得點(diǎn)B到直線l的距離d=$\frac{|4{t}^{2}-4t+2|}{\sqrt{17}}$=$\frac{4(t-\frac{1}{2})^{2}+1}{\sqrt{17}}$≥$\frac{\sqrt{17}}{17}$,
當(dāng)且僅當(dāng)t=$\frac{1}{2}$時(shí)取等號(hào).
此時(shí)B$(\frac{1}{2},1)$,
此時(shí)|AB|取最小值是$\frac{\sqrt{17}}{17}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2-$\sqrt{2}$,1) | B. | [2-$\sqrt{2}$,2+$\sqrt{2}$] | C. | (-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞) | D. | (2-$\sqrt{2}$,2+$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等于90° | B. | 小于90° | C. | 大于90° | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $A_5^5$ | B. | $A_3^3•A_3^3$ | C. | $\frac{A_5^5}{A_3^3}$ | D. | $A_3^3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com