7.已知直線l:mx+y+3m-$\sqrt{3}$=0與圓x2+y2=12交于A,B兩點,若AB=2$\sqrt{3}$,則實數(shù)m的值為-$\frac{\sqrt{3}}{3}$.

分析 利用弦長公式,求出圓心到直線的距離,利用點到直線的距離公式建立方程,即可求出實數(shù)m的值.

解答 解:由題意,|AB|=2$\sqrt{3}$,
∴圓心到直線的距離d=3,
∴$\frac{|3m-\sqrt{3}|}{\sqrt{{m}^{2}+1}}$=3,
∴m=-$\frac{\sqrt{3}}{3}$.
故答案為:-$\frac{\sqrt{3}}{3}$.

點評 本題考查直線與圓的位置關(guān)系,考查弦長的計算,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知某算法的程序框圖如圖所示.
(1)若程序運行中輸出的一個數(shù)組是(5,y),求y的值;
(2)程序結(jié)束時,共輸出(x,y)的組數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若p:a∈R且-1<a<1,q:關(guān)于x的一元二次方程:x2+(a+1)x+a-2=0的一個根大于零,另一個根小于零,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直三棱柱ABC-A1B1C1中,∠BCA=90°,M是AB的中點,BC=CA=CC1,則C1M與面BCC1B1所成的角的正弦值為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{6}}{6}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{30}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)═ax2+bx+1,a,b∈R.
(I)若關(guān)于x的不等式f(x)>0的解集為(-1,2),求a、b的值;
(Ⅱ)已知f(1)=0,當(dāng)a>1時,求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三棱錐S-ABC的所有頂點都在球O的球 面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=$\sqrt{2}$,則球O的表面積是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,∠A,∠B,∠C所對應(yīng)的邊分別為a,b,c.若∠C=30°,a=$\sqrt{2}$c,則∠B等于( 。
A.45°B.105°C.15°或105°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)A={x|2x>1},B={x|y=log2(x+1)},則A∪B=(  )
A.{x|-1<x<0}B.{x|x≥1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知cos(α-$\frac{π}{3}$)=$\frac{1}{3}$,則sin(2α-$\frac{π}{6}$)=-$\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊答案