9.一種電子抽獎(jiǎng)方式是:一次抽獎(jiǎng)點(diǎn)擊四次按鈕,每次點(diǎn)擊后,隨機(jī)出現(xiàn)數(shù)字1,2,3,4.當(dāng)出現(xiàn)的四個(gè)數(shù)字不重復(fù),且相鄰兩數(shù)字不是連續(xù)數(shù)字(即兩個(gè)數(shù)字差的絕對(duì)值為1)時(shí),獲頭獎(jiǎng),則第一次抽獎(jiǎng)獲頭獎(jiǎng)的概率為( 。
A.$\frac{1}{128}$B.$\frac{3}{256}$C.$\frac{1}{64}$D.$\frac{1}{12}$

分析 所有頭獎(jiǎng)的結(jié)果為:3142,2413,而所有可能出現(xiàn)的結(jié)果有44=256種,由此能求出第一次抽獎(jiǎng)獲頭獎(jiǎng)的概率.

解答 解:∵一次抽獎(jiǎng)點(diǎn)擊四次按鈕,每次點(diǎn)擊后,隨機(jī)出現(xiàn)數(shù)字1,2,3,4.
當(dāng)出現(xiàn)的四個(gè)數(shù)字不重復(fù),且相鄰兩數(shù)字不是連續(xù)數(shù)字(即兩個(gè)數(shù)字差的絕對(duì)值為1)時(shí),獲頭獎(jiǎng),
∴所有頭獎(jiǎng)的結(jié)果為:3142,2413,
而所有可能出現(xiàn)的結(jié)果有44=256種,
∴第一次抽獎(jiǎng)獲頭獎(jiǎng)的概率為p=$\frac{2}{256}=\frac{1}{128}$.
故選:A.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}中,a1=2,a2=4,設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)于任意的n>1,n∈N*,Sn+1+Sn-1=2(Sn+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n}{{2}^{{a}_{n}}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖程序框圖,輸出a的結(jié)果為( 。
A.初始值aB.三個(gè)數(shù)中的最大值
C.三個(gè)數(shù)中的最小值D.初始值c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線$x-y+\sqrt{2}=0$相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓C相交與A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則在橢圓C上是否存在點(diǎn)P,使得四邊形OAPB為平行四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(文)設(shè)F是雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右焦點(diǎn),$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$為直線上一點(diǎn),直線垂直于x軸,垂足為M,若△PMF等腰三角形,則E的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線2x+my=2m-4與直線mx+2y=m-2平行的充要條件是(  )
A.m=0B.m=±2C.m=2D.m=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合U=R,A={x|(x+l) (x-2)<0},則∁UA=( 。
A.(一∞,-1)∪(2,+∞)B.[-l,2]C.(一∞,-1]∪[2,+∞)D.(一1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合I={3,4,5,6,7,8,9},A={8,9},則滿足B⊆I,且A∩B≠∅中的集合B的個(gè)數(shù)為( 。
A.160B.96C.64D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且b,c是關(guān)于x的一元二次方程x2+mx-a2+b2+c2=0的兩根.
(1)求角A的大小;
(2)已知a=$\sqrt{3}$,設(shè)B=θ,△ABC的面積為y,求y=f(θ)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案