分析 ①存在AC中點E,則EF∥CD′,利用線面平行的判定定理可得EF∥平面BCD′;
②若EF⊥平面ABD′,則平面ADC⊥平面ABD′,顯然不成立;
③D′E⊥AC,利用面面垂直的性質,可得D′E⊥平面ABC;
④因為ABCD是矩形,AB=4,AD=3,所以B,D′在AC上的射影不是同一點,所以不存在點E,使得AC⊥平面BD′E.
解答 解:①存在AC中點E,則EF∥CD′,利用線面平行的判定定理可得EF∥平面BCD′,正確;
②若EF⊥平面ABD′,則平面ADC⊥平面ABD′,顯然不成立,故不正確;
③D′E⊥AC,利用面面垂直的性質,可得D′E⊥平面ABC,正確;
④因為ABCD是矩形,AB=4,AD=3,所以B,D′在AC上的射影不是同一點,所以不存在點E,使得AC⊥平面BD′E,故不正確;
故答案為:①③.
點評 本題考查線面平行的判定,考查面面垂直的性質,考查學生分析解決問題的能力,比較基礎.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2]∪[3,+∞) | B. | (-2,3) | C. | (-∞,-3)∪(2,+∞) | D. | (-∞,-2)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
滿意度 品牌 | 滿意 | 不滿意 |
A | 80% | 20% |
B | 60% | 40% |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com