A. | (-∞,-2$\sqrt{3}$] | B. | [2,+∞) | C. | (-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞) | D. | (-∞,-2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞) |
分析 依題意,可得m∈[1,4],x2+mx+4>4m+4x恒成立?(x-4)m+x2-4x+4>0恒成立,構造函數g(m)=(x-4)m+x2-4x+4,則$\left\{\begin{array}{l}{g(1)>0}\\{g(4)>0}\end{array}\right.$,解之即可得到實數x的取值范圍.
解答 解:∵t∈[2,16],
∴f(t)=log2t∈[1,4],即m∈[1,4]時,x2+mx+4>4m+4x恒成立,即m∈[1,4],(x-4)m+x2-4x+4>0恒成立,
令g(m)=(x-4)m+x2-4x+4,
則$\left\{\begin{array}{l}{g(1)>0}\\{g(4)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}^{2}-3x>0}\\{{x}^{2}-12>0}\end{array}\right.$,解得:x>2$\sqrt{3}$或x<-2$\sqrt{3}$,
故選:D.
點評 本題考查函數恒成立問題,分離參數m并構造函數g(m)=(x-4)m+x2-4x+4是關鍵,考查等價轉化思想與函數方程思想,屬于難題.
科目:高中數學 來源: 題型:選擇題
A. | 39 | B. | 45 | C. | 50 | D. | 55 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{99}{100}$ | B. | $\frac{99}{100}$ | C. | -$\frac{100}{99}$ | D. | $\frac{100}{99}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{21}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{4}=1$ | D. | $\frac{y^2}{25}+\frac{x^2}{21}=1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,1] | B. | [-1,1] | C. | (-∞,1] | D. | [-1,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com