11.曲線f(x)=x2+x在(1,f(1))處的切線方程為(  )
A.2x-y-1=0B.2x-y=0C.3x-y+1=0D.3x-y-1=0

分析 欲求曲線y=x2+x在點(diǎn)(1,2)處的切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而可以得出結(jié)論.

解答 解:∵y=x2+x,
∴f′(x)=2x+1,
故當(dāng)x=1時,f′(1)=3得切線的斜率為3,所以k=3;
∴曲線在點(diǎn)(1,2)處的切線方程為:y-2=3(x-1),即3x-y-1=0,
故選:D.

點(diǎn)評 本題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-2alnx(a∈R且a≠0).
(1)當(dāng)a=1時,求函數(shù)y=f(x)的極值;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=xlnx.
(1)求f′(x);
(2)設(shè)0<a<b,求常數(shù)c,使得$\frac{1}{b-a}\int_a^b{|lnx-c|dx}$取得最小值;
(3)記(2)中的最小值為Ma,b,證明Ma,b<ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2.
(Ⅰ)若M是棱PB上一點(diǎn),且BM=2PM,求證:PD∥平面MAC;
(Ⅱ) 若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,求PC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果雙曲線$\frac{x^2}{a^2}-\frac{y^2}{{{b^{\;}}}}$=1的一條漸近線方程為y=$\frac{2}{3}$x,那么它的離心率為( 。
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{{\sqrt{13}}}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.棱長為1的正四面體ABCD中,E為棱AB上一點(diǎn)(不含A,B兩點(diǎn)),點(diǎn)E到平面ACD和平面BCD的距離分別為a,b,則$\frac{(ab+1)(a+b)}{ab}$的最小值為( 。
A.2B.$2\sqrt{3}$C.$2\sqrt{6}$D.$\frac{{7\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,則P(5<X<6)=(  )
A.0.1359B.0.1358C.0.2718D.0.2716

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知角α的終邊落在射線5x+12y=0,(x≤0)上,則cosα+$\frac{1}{tanα}$-$\frac{1}{sinα}$的值為-$\frac{77}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=sin2x-4sinx-3
求:(1)函數(shù)的最大值,最小值
(2)求取得最大值,最小值時的x的取值集合.

查看答案和解析>>

同步練習(xí)冊答案