分析 由原方程可得$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2≥0}\end{array}\right.$或x-y-2=0,進(jìn)一步求出$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2≥0}\end{array}\right.$的軌跡得答案.
解答 解:由(x+y-1)$\sqrt{x-y-2}$=0,
得$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2>0}\end{array}\right.$或x-y-2=0.
由$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2>0}\end{array}\right.$,得$\left\{\begin{array}{l}{x+y-1=0}\\{x>\frac{3}{2}}\end{array}\right.$,∴$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2>0}\end{array}\right.$表示無端點的射線x+y-1=0(x>$\frac{3}{2}$).
∴方程(x+y-1)$\sqrt{x-y-2}$=0的曲線是射線x+y-1=0(x>$\frac{3}{2}$)和直線x-y-2=0.
∴曲線是直線x-y-2=0和直線x+y-1=0在直線x-y-2=0下方的射線.
點評 本題考查曲線的方程和方程的曲線概念,關(guān)鍵是注意根式有意義,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com