3.已知函數(shù)f(x)=x2+bsinx-2(b∈R),g(x)=f(x)+2且g(x)是偶函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)h(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào),求實數(shù)a的取值范圍.

分析 (1)由g(x)=x2+bsinx-2+2得g(x)=x2+bsinx,利用g(-x)=g(x),求函數(shù)f(x)的解析式;
(2)已知函數(shù)h(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào),有h'(x)≥0或h'(x)≤0恒成立,分離參數(shù),求最值,即可求實數(shù)a的取值范圍.

解答 解:(1)由g(x)=x2+bsinx-2+2得g(x)=x2+bsinx
∵g(-x)=g(x)
∴x2-bsinx=x2+bsinx
∴bsinx=0⇒sinx=0或 b=0
故f(x)=x2-2
(2)由 h(x)=x2-2+2(x+1)+alnx得h(x)=x2+2x+alnx(x>0),
$h'(x)=2x+2+\frac{a}{x}$(x>0)
∵h(yuǎn)(x)在區(qū)間(0,1)上單調(diào),
∴有h'(x)≥0或h'(x)≤0恒成立
即2x2+2x+a≥0或2x2+2x+a≤0,
∴a≥-2x2-2x或a≤-2x2-2x
設(shè)t=-2x2-2x,當(dāng)0<x<1時,-4<t<0,
∴a≥0或a≤-4
∴實數(shù)a的取值范圍是(-∞,-4]∪[0,+∞).

點(diǎn)評 本題考查利用導(dǎo)數(shù)知識的應(yīng)用,考查函數(shù)的解析式,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)y=ex,若f(x)的圖象的一條切線經(jīng)過點(diǎn)(-1,0),則這條切線與直線x=2及x軸所圍成的三角形面積為(  )
A.$\frac{4}{e}$B.$\frac{9}{2}$C.2D.$\frac{{e}^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=$\left\{{\begin{array}{l}{x+1,x>0}\\{π,x=0}\\{0,x<0}\end{array}}$,則f{f[f(-2015)]}=π+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某電子廣告牌連續(xù)播出四個廣告,假設(shè)每個廣告所需的時間互相獨(dú)立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計,以往播出100次所需的時間(t)的情況如下:
類別1號廣告2號廣告3號廣告4號廣告
廣告次數(shù)20304010
時間t(分鐘/人)2346
每次隨機(jī)播出,若將頻率視為概率.
(Ⅰ)求恰好在開播第6分鐘后開始播出第3號廣告的概率;
(Ⅱ)求第4分鐘末完整播出廣告1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{{\sqrt{3-ax}}}{a-1}$(a≠1).
(1)若f(x)在x=2處有意義,則實數(shù)a的取值范圍是$(-∞,1)∪(1,\frac{3}{2}]$;
(2)若f(x)在區(qū)間(0,1)上是減函數(shù),則實數(shù)a的取值范圍是(-∞,0)∪(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四邊形ABCD中,AD∥BC,BC=CD,∠ADC=90°,BC=DC=2AD,E為四邊形ABCD內(nèi)一點(diǎn),F(xiàn)為四邊形ABCD外一點(diǎn),且∠BEC=∠DFC=90°,BE∥CF交CD的中點(diǎn)于N.
(1)已知EC=1,求線段DF的長;
(2)連接BF交EC于G,求證:∠A+$\frac{1}{3}$∠ABF=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

兩數(shù)之間插入5個數(shù),使他們與組成等差數(shù)列,則該數(shù)列的公差為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=x2+(3a+1)x+2a在(-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.畫出方程(x+y-1)$\sqrt{x-y-2}$=0所表示的曲線.

查看答案和解析>>

同步練習(xí)冊答案