【題目】如圖,四棱錐中,底面是菱形,.

1)證明:平面平面;

2)若,,,求二面角的余弦值.

【答案】1)見解析(2

【解析】

1)通過菱形的性質(zhì)證得,通過等腰三角形的性質(zhì)證得,由此證得平面,從而證得平面平面.

2)方法一通過幾何法作出二面角的平面角,解三角形求得二面角的余弦值.方法而通過建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.

1)證明:記,連接

因?yàn)榈酌?/span>是菱形,

所以,的中點(diǎn).

因?yàn)?/span>,所以

因?yàn)?/span>,

所以平面

因?yàn)?/span>平面,所以平面平面

2)因?yàn)榈酌?/span>是菱形,,,

所以是等邊三角形,即

因?yàn)?/span>,所以

,,所以

方法一:因?yàn)?/span>的中點(diǎn),所以,

因?yàn)?/span>,所以,

所以都是等腰三角形.

中點(diǎn),連接,則,且,

所以是二面角的平面角.

因?yàn)?/span>,且

所以

因?yàn)?/span>,

,

所以

所以二面角的余弦值為

方法二:如圖,以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸,建立空間直角坐標(biāo)系

,,,

所以,,

設(shè)平面的法向量為

,得

,得.

同理,可求平面的法向量

所以

所以,二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與拋物線的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn)

(1)求橢圓及拋物線的方程;

(2)設(shè)過且互相垂直的兩動(dòng)直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的個(gè)數(shù)是(

①直線上有兩個(gè)點(diǎn)到平面的距離相等,則這條直線和這個(gè)平面平行;

為異面直線,則過且與平行的平面有且僅有一個(gè);

③直四棱柱是直平行六面體;

④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

1)求過點(diǎn)的圓的切線方程;

2)若直線過點(diǎn)且被圓C截得的弦長(zhǎng)為,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車尾氣中含有一氧化碳(),碳?xì)浠衔铮?/span>)等污染物,是環(huán)境污染的主要因素之一,汽車在使用若干年之后排放的尾氣中的污染物會(huì)出現(xiàn)遞增的現(xiàn)象,所以國家根據(jù)機(jī)動(dòng)車使用和安全技術(shù)、排放檢驗(yàn)狀況,對(duì)達(dá)到報(bào)廢標(biāo)準(zhǔn)的機(jī)動(dòng)車實(shí)施強(qiáng)制報(bào)廢.某環(huán)保組織為了解公眾對(duì)機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的了解情況,隨機(jī)調(diào)查了100人,所得數(shù)據(jù)制成如下列聯(lián)表:

不了解

了解

總計(jì)

女性

50

男性

15

35

50

總計(jì)

100

(1)若從這100人中任選1人,選到了解機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的人的概率為,問是否有的把握認(rèn)為“對(duì)機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”?

(2)該環(huán)保組織從相關(guān)部門獲得某型號(hào)汽車的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號(hào)汽車的使用年限不超過15年,可近似認(rèn)為排放的尾氣中濃度與使用年限線性相關(guān),試確定關(guān)于的回歸方程,并預(yù)測(cè)該型號(hào)的汽車使用12年排放尾氣中的濃度是使用4年的多少倍.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:用最小二乘法求線性回歸方程系數(shù)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,,若圓Q方程,且圓心Q在橢圓上.

1)求橢圓的方程;

2)已知直線交橢圓A、B兩點(diǎn),過直線上一動(dòng)點(diǎn)P作與垂直的直線交圓QC、D兩點(diǎn),M為弦CD中點(diǎn),的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),且P到拋物線焦點(diǎn)的距離為2直線過點(diǎn),且與拋物線相交于AB兩點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)若點(diǎn)Q恰為線段AB的中點(diǎn),求直線的方程;

(Ⅲ)過點(diǎn)作直線MA,MB分別交拋物線于C,D兩點(diǎn),請(qǐng)問CD,Q三點(diǎn)能否共線?若能,求出直線的斜率;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)設(shè),若對(duì)任意,均存在使得,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案