分析 首先將實(shí)際問(wèn)題抽象成解三角形問(wèn)題,再借助于正弦定理求出燈塔M和輪船起始位置A的距離.
解答 解:由題意可知△ABM中AB=20,B=45°,A=75°,
∴∠M=60°,由正弦定理可得$\frac{20}{\frac{\sqrt{3}}{2}}=\frac{AM}{\frac{\sqrt{2}}{2}}$,
∴AM=$\frac{20\sqrt{6}}{3}$.
故答案為:$\frac{20\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題考查解三角形的實(shí)際應(yīng)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\frac{1}{x^2}$ | B. | f(x)=x2+1 | C. | f(x)=x3 | D. | f(x)=|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{3}{2}$,+∞) | B. | (-∞,-$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (-∞,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com