分析 (1)由正弦定理化簡已知可得:sinA=$\sqrt{3}$sinCsinA-sinAcosC,由sinA≠0,可得:2sin(C-$\frac{π}{6}$)=1,結合范圍0<C<π,-$\frac{π}{6}$<C-$\frac{π}{6}$<$\frac{5π}{6}$,即可解得C的值.
(2)由余弦定理可得:4=(a+b)2-3ab,①,由△ABC的面積為$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,解得:ab=4,②,由①②即可解得:a=b=2.
解答 解:(1)∵a=$\sqrt{3}$csinA-acosC.
∴由正弦定理可得:sinA=$\sqrt{3}$sinCsinA-sinAcosC,
∵sinA≠0,
∴1=$\sqrt{3}$sinC-cosC,可得:2sin(C-$\frac{π}{6}$)=1,
∵0<C<π,-$\frac{π}{6}$<C-$\frac{π}{6}$<$\frac{5π}{6}$,
∴C-$\frac{π}{6}$=$\frac{π}{6}$,解得:C=$\frac{π}{3}$.
(2)∵c=2,
∴由余弦定理可得:4=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab,①,
∵△ABC的面積為$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,解得:ab=4,②
∴由①②解得:a=b=2.
點評 本題主要考查了正弦定理,余弦定理,三角形面積公式,熟練掌握和靈活應用相關公式是解題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1<a<$\frac{1}{3}$ | B. | a<$\frac{1}{3}$ | C. | a>$\root{3}{3}$ | D. | $\frac{1}{3}$<a<$\root{3}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m∥n,n?α,則m∥α | B. | 若m∥α,n?α,則m∥n | C. | 若m∥α,n∥α,則m∥n | D. | 若m⊥α,n⊥α,則m∥n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com