設F是雙曲線
x2
a2
-
y2
b2
=1的右焦點,雙曲線兩漸近線分另.為l1,l2過F作直線l1的垂線,分別交l1,l2于A,B兩點.若OA,AB,OB成等差數(shù)列,且向量
BF
FA
同向,則雙曲線的離心 率e的大小為(  )
A、
3
2
B、
2
C、2
D、
5
2
考點:雙曲線的簡單性質
專題:綜合題,圓錐曲線的定義、性質與方程
分析:由勾股定理、OA,AB,OB成等差數(shù)列,得出直角三角形的2個直角邊的長度比,聯(lián)想到漸近線的夾角,求出漸近線的斜率,進而求出離心率.
解答: 解:由條件知,OA⊥AB,所以OA2+AB2=OB2,
因為OA,AB,OB成等差數(shù)列,所以2AB=OA+OB,
所以OA:AB:OB=3:4:5,
于是tan∠AOB=
4
3

因為向量
BF
FA
同向,所以過F作直線l1的垂線與雙曲線相交于同一支.
而雙曲線
x2
a2
-
y2
b2
=1的漸近線方程分別為
x
a
±
y
b
=0,故
2•
b
a
1-(
b
a
)2
=
4
3
,
解得a=2b,
故雙曲線的離心率e=
c
a
=
5
2
點評:本題考查了雙曲線的簡單性質以及等差數(shù)列的性質,確定tan∠AOB=
4
3
,聯(lián)想到對應的是漸近線的夾角的正切值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
36
-
y2
45
=1
上一點P到焦點F1的距離是16,則P到F2的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與雙曲線x2-y2=1過一、三象限的漸近線平行且距離為
2
的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題“?x,y∈(0,+∞),都有(x+y)(
1
x
+
a
y
)≥9”為真命題,則正實數(shù)a的最小值是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:-4<x-a<4,命題q:(x-1)(x-3)<0,且q是p的充分而不必要條件,則a的取值范圍是( 。
A、[-1,5]
B、[-1,5)
C、(-1,5]
D、(-1,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
4
+
y2
3
=1
,雙曲線C2
x2
m2
-
y2
n2
=1(m,n>0)
,橢圓C1的焦點和長軸端點分別是雙曲線C2的頂點和焦點,則雙曲線C2的漸近線必經(jīng)過點( 。
A、(
2
,
3
)
B、(2,
3
)
C、(
3
,1)
D、(
3
,-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=-x2+1在點(1,0)處的切線方程為( 。
A、x+y-1=0
B、2x-y-1=0
C、2x+y-2=0
D、x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個幾何體的三視圖,根據(jù)圖中的數(shù)據(jù),可得該幾何體的體積是( 。
A、2B、4C、5D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x-a)(x-b),點A(s,f(s)),B(t,f(t)).
(Ⅰ)若a=0,b=3,函數(shù)f(x)在(t,t+3)上既能取到極大值,又能取到極小值,求t的取值范圍;
(Ⅱ)當a=0時,
f(x)
x
+lnx+1≥0
對任意的x∈[
1
2
,+∞)
恒成立,求b的取值范圍;
(Ⅲ)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b<2
3
,O是坐標原點,探究直線OA與直線OB能否垂直,并說明理由.

查看答案和解析>>

同步練習冊答案