A. | 點(diǎn)P在圓C上 | B. | 點(diǎn)P在圓C外 | C. | 點(diǎn)P在圓C內(nèi) | D. | 不能確定 |
分析 本題是兩個(gè)古典概型的問題,試驗(yàn)發(fā)生包含的事件是一顆骰子投擲兩次,共有36種結(jié)果,使得兩條直線平行的a,b的值可以通過列舉做出,還有一種就是使得兩條直線重合,除此之外剩下的是相交的情況,求出概率,從而得到P(2,33),由圓心到點(diǎn)P的距離能判斷點(diǎn)P與圓C的位置關(guān)系.
解答 解:由題意知本題是兩個(gè)古典概型的問題,
試驗(yàn)發(fā)生包含的事件是一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,
第二次出現(xiàn)的點(diǎn)數(shù)記為b,共有36種結(jié)果,
要使的兩條直線?1:ax+by=2,?2:x+2y=2平行,
則a=2,b=4;a=3;b=6,共有2種結(jié)果,
當(dāng)A=1,B=2時(shí),兩條直線平行,
其他33種結(jié)果,都使的兩條直線相交,
∴兩條直線平行的概率p1=$\frac{2}{36}$=$\frac{1}{18}$,
兩條直線相交的概率${p}_{2}=\frac{33}{36}$=$\frac{11}{12}$,
∴點(diǎn)P(36P1,36P2)為P(2,33),
點(diǎn)P到圓C:x2+y2=1098的圓心C(0,0)的距離d=$\sqrt{4+1089}$=$\sqrt{1093}$<$\sqrt{1098}=r$,
∴點(diǎn)P在圓內(nèi).
故選:C.
點(diǎn)評(píng) 本題考查點(diǎn)與圓的位置關(guān)系的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意概率、兩點(diǎn)間距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{7π}{12}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,$\frac{3}{2}$] | B. | [-1,2] | C. | [-2,3] | D. | [1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{4}$,$\frac{1}{3}$] | B. | [$\frac{1}{4}$,$\frac{1}{3}$) | C. | [$\frac{1}{5}$,$\frac{1}{3}$) | D. | [$\frac{1}{5}$,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com