【題目】進入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅持保民生、保藍天,嚴格落實機動車限行等一系列管控令,該地區(qū)交通管理部門為了了解市民對單雙號限行的贊同情況,隨機采訪了220名市民,將他們的意見和是否擁有私家車情況進行了統(tǒng)計,得到如下的2×2列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

1)根據(jù)上面的列聯(lián)表判斷,能否有99%的把握認為贊同限行與是否擁有私家車有關(guān);

2)為了解限行之后是否對交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進行電話回訪,求抽到的2人中至少有1沒有私家車人員的概率.

參考公式:K2

PK2≥k

0.10

0.05

0.010

0.005

0.001

k

2.706

3..841

6.635

7.879

10.828

【答案】(1)有的把握認為贊同限行與是否擁有私家車有關(guān);(2)

【解析】

1)根據(jù)列聯(lián)表里的數(shù)據(jù),計算出的值,然后進行判斷;(2)根據(jù)分層抽樣的要求得到?jīng)]有私家車的應抽取2 有私家車的4人,再求出總的情況數(shù)和符合要求的情況數(shù),由古典概型公式,得到答案.

解:(1)根據(jù)列聯(lián)表,計算

所以有的把握認為贊同限行與是否擁有私家車有關(guān)

(2)從不贊同限行的人員中按分層抽樣法抽取6人,

沒有私家車的應抽取2 有私家車的4人.

隨機抽出2人,總的情況數(shù)為

至少有1沒有私家車人員的情況數(shù)為,

所以根據(jù)古典概型的公式得:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知角α=45°,

(1)在-720°~0°范圍內(nèi)找出所有與角α終邊相同的角β;

(2)設集合,判斷兩集合的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用五點法畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

0

π

2π

x

0

4

-4

0

1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)fx)的解析式;

2)將圖象上所有點向左平行移動θ)個單位長度,得到的圖象.圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中學生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:

表一:男生

男生

等級

優(yōu)秀

合格

尚待改進

頻數(shù)

15

5

表二:女生

女生

等級

優(yōu)秀

合格

尚待改進

頻數(shù)

15

3

(1)求,的值;

(2)從表二的非優(yōu)秀學生中隨機抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;

(3)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

男生

女生

總計

優(yōu)秀

非優(yōu)秀

總計

45

參考公式:,其中.

參考數(shù)據(jù):

0.01

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號設備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):

(年)

2

3

4

5

6

(萬元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該工廠技術(shù)改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角梯形ABDC中,,,,.

1)若S是直角梯形ABDC所在平面外一點,畫出平面SBD和平面SAC的交線,并說明理由;

2)直角梯形ABDC繞直線AC所在直線旋轉(zhuǎn)一周所得幾何體名稱是什么?并求出其體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為t是參數(shù)),在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為

(Ⅰ)寫出直線l的普通方程、曲線C的參數(shù)方程;

(Ⅱ)過曲線C上任意一點A作與直線l的夾角為45°的直線,設該直線與直線l交于點B,求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解人們對延遲退休年齡政策的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計結(jié)果如下:

(I)由頻率分布直方圖估計年齡的眾數(shù)和平均數(shù);

(II)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認為以45歲為分界點的不同人群對延遲退休年齡政策的支持度有差異;

參考數(shù)據(jù):

(III)若以45歲為分界點,從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中x>0,k為常數(shù),e為自然對數(shù)的底數(shù).

(1)當k≤0時,求的單調(diào)區(qū)間;

(2)若函數(shù)在區(qū)間(1,3)上存在兩個極值點,求實數(shù)k的取值范圍;

(3)證明:對任意給定的實數(shù)k,存在(),使得在區(qū)間(,)上單調(diào)遞增.

查看答案和解析>>

同步練習冊答案