13.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位).
(1)求w;
(2)設(shè)z∈C,在復(fù)平面內(nèi)求滿足不等式1≤|z-w|≤2的點(diǎn)Z構(gòu)成的圖形面積.

分析 (1)利用復(fù)數(shù)的運(yùn)算法則即可得出;
(2)利用復(fù)數(shù)圓的方程及其面積計(jì)算公式即可得出.

解答 解:(1)∵w(1+2i)=4+3i,∴$w=\frac{4+3i}{1+2i}=2-i$;
(2)在復(fù)平面內(nèi)求滿足不等式1≤|z-w|≤2的點(diǎn)Z構(gòu)成的圖形為一個(gè)圓環(huán),
其中大圓為:以(2,-1)為圓心,2為半徑的圓;小圓是:以(2,-1)為圓心,1為半徑的圓.
∴在復(fù)平面內(nèi)求滿足不等式1≤|z-w|≤2的點(diǎn)Z構(gòu)成的圖形面積=22π-12×π=3π.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)圓的方程及其面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某高校一專業(yè)在一次自主招生中,對(duì)20名已經(jīng)選拔入圍的學(xué)生進(jìn)行語言表達(dá)能力和邏輯思維能力測試,結(jié)果如表:
語言表達(dá)能力
人數(shù)
邏輯思維能力
一般良好優(yōu)秀
一般221
良好4m1
優(yōu)秀13n
由于部分?jǐn)?shù)據(jù)丟失,只知道從這20名參加測試的學(xué)生中隨機(jī)抽取一人,抽到語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生的概率為$\frac{2}{5}$.
(1)從參加測試的語言表達(dá)能力良好的學(xué)生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學(xué)生的概率;
(2)從參加測試的20名學(xué)生中任意抽取2名,設(shè)語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列及其均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題:①已知A、B、C是三角形ABC的內(nèi)角,則A=B是sinA=sinB的充要條件;②設(shè)$\overrightarrow a$,$\overrightarrow b$為向量,如果|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$-$\overrightarrow b$|,則$\overrightarrow a⊥\overrightarrow b$;③設(shè)$\overrightarrow{a}$,$\overrightarrow$為向量,則“$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$”是“$\overrightarrow a$∥$\overrightarrow b$”的充分不必要條件;④設(shè)$\overrightarrow{a}$,$\overrightarrow$為向量,“$\overrightarrow{a}$=2$\overrightarrow$”是“$\overrightarrow{a}$與$\overrightarrow b$共線”的充要條件,正確的是( 。
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定積分$\int_0^2{[\sqrt{4-{{(x-2)}^2}}-x]dx}$的值為( 。
A.$\frac{π-2}{4}$B.π-2C.2π-2D.4π-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若z=3-4i(i是虛數(shù)單位),則|z|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC中,向量$\overrightarrow{AB}=(x,2x),\overrightarrow{AC}$=(3x,2),且∠BAC是鈍角,則x的取值范圍是($-\frac{4}{3},0$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知不等式ax2+bx+c>0的解集為$\left\{{x|-\frac{1}{3}<x<2}\right\}$,則不等式cx2+bx+a<0的解集為( 。
A.$\left\{{x|-3<x<\frac{1}{2}}\right\}$B.$\left\{{x|x<-3或x>\frac{1}{2}}\right\}$C.$\left\{{x|-2<x<\frac{1}{3}}\right\}$D.$\left\{{x|x<-2或x>\frac{1}{3}}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=cosωx(ω>0)的圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對(duì)稱,且在區(qū)間[0,$\frac{π}{2}$]上是單調(diào)函數(shù),則ω的值為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$或$\frac{1}{2}$D.$\frac{2}{3}$或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,(a0+a2+a4+a62-(a1+a3+a5+a72值為-2187.

查看答案和解析>>

同步練習(xí)冊答案