11.下列指數(shù)式與對數(shù)式互化不正確的一組是( 。
A.e0=1與ln1=0;B.8${\;}^{\frac{1}{3}}$=2與log82=$\frac{1}{3}$
C.log39=2與9${\;}^{\frac{1}{2}}$=3D.log33=1與31=3

分析 利用指數(shù)式與對數(shù)式互化的方法即可判斷出.

解答 解:A.e0=1與ln1=0,正確;
B.8${\;}^{\frac{1}{3}}$=2與log82=$\frac{1}{3}$,正確;
C.log39=2應該化為32=9,不正確;
D.log33=1與31=3,正確.
故選:C.

點評 本題考查了指數(shù)式與對數(shù)式互化,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{{\sqrt{2-{{log}_2}(1-x)}}}$的定義域為( 。
A.(-3,+∞)B.$(-∞,\frac{1}{2})$C.(-3,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列各式中正確的是( 。
A.0=∅B.∅={0}C.0∈∅D.∅⊆{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設f(x)是定義域在R上的奇函數(shù),當x≤0時,f(x)=2x+2x+b(b為常數(shù)),則f(1)=(  )
A.3B.$\frac{5}{2}$C.-3D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設命題p:?x∈R,x2-2x>a;命題q:$?{x_0}∈R,{x_0}^2+2a{x_0}+2-a=0$.如果命題“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點為頂點,以橢圓的頂點為焦點的雙曲線方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設a=30.2,b=0.23,c=log0.23,則a,b,c的大小關系是( 。
A.a>c>bB.b>c>aC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個焦點,B為橢圓E的上頂點,且$\overrightarrow{B{F}_{1}}$⊥$\overrightarrow{B{F}_{2}}$,若△BF1F2的面積是9,求橢圓的短軸長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.斜率為-$\frac{1}{2}$,且在y軸上的截距為5的直線方程為x+2y-10=0.

查看答案和解析>>

同步練習冊答案