【題目】己知橢圓W:+=1(a>b>0),直線:=與軸,軸的交點分別是橢圓W的焦點與頂點。
(1)求橢圓W的方程;
(2)設(shè)直線m:=kx(k≠0)與橢圓W交于P,Q兩點,過點P(,)作PC⊥軸,垂足為點C,直線交橢圓w于另一點R。
①求△PCQ面積的最大值;②求出∠QPR的大小。
【答案】(1);(2)①,②90.
【解析】
(1)由題意求出c,b,進而得到橢圓W的方程;
(2)①設(shè)P(,),則Q(,),C(,0),可知S,利用點在橢圓上及均值不等式即可得到△PCQ面積的最大值;②設(shè)P(,),則Q(,),C(,0),k=,直線QR的斜率,直線QR的方程:()與橢圓方程聯(lián)立可得(2+)2-2,求得R點坐標(biāo),進而得到即可得到結(jié)果.
(1)直線:與軸,軸的交點分別(,0),(0,),
可知c=,,橢圓W的方程。
(2)①設(shè)P(,),則Q(,),C(,0),可知S,
有已知可知,根據(jù)重要不等式得,S,
當(dāng)且僅當(dāng)或時,面積取得最大值。
②設(shè)P(,),則Q(,),C(,0),k=。
直線QR的斜率。
可得直線QR的方程:(),設(shè)點R(,),
聯(lián)立消去得(2+)2-2,
則,解得,所以,點R(,)。
因為,所以,所以∠QPR=90°。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.
(Ⅰ)求證:;
(Ⅱ)若,,直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平移θ(θ>0)個單位長度,得到y=g(x)的圖象.若y=g(x)圖象的一個對稱中心為(,0),求θ的最小值.
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是正方體的平面展開圖,在這個正方體中,正確的命題是( )
A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,,則下列結(jié)論正確的是( )
A. 把上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到曲線
B. 把上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),得到曲線
C. 把上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
D. 把上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點.
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點,求多面體與多面體的體積之比;
(Ⅲ)是否存在一點,使得平面?若存在,求的長.若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績,現(xiàn)有甲、乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲、乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;
(2)現(xiàn)從甲、乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線的離心率互為倒數(shù),且過點.
(1)求橢圓C的方程;
(2)過作兩條直線與圓相切且分別交橢圓于M、N兩點.
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com