2.函數(shù)$f(x)=cos(ωx+\frac{π}{6})(ω>0)$的最小正周期是π,則其圖象向右平移$\frac{π}{3}$個(gè)單位后的單調(diào)遞減區(qū)間是(  )
A.$[{-\frac{π}{4}+kπ,\frac{π}{4}+kπ}](k∈Z)$B.$[{\frac{π}{4}+kπ,\frac{3π}{4}+kπ}](k∈Z)$
C.$[{\frac{π}{12}+kπ,\frac{7π}{12}+kπ}](k∈Z)$D.$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ}](k∈Z)$

分析 根據(jù)最小正周期是π,可知ω=2,求得圖象向右平移$\frac{π}{3}$個(gè)單位后解析式,再結(jié)合三角函數(shù)的性質(zhì)求單調(diào)遞減區(qū)間.

解答 解:由函數(shù)$f(x)=cos(ωx+\frac{π}{6})(ω>0)$的最小正周期是π,即$\frac{2π}{ω}=2$,解得:ω=2,
圖象向右平移$\frac{π}{3}$個(gè)單位,經(jīng)過平移后得到函數(shù)解析式為$y=cos[{2({x-\frac{π}{3}})+\frac{π}{6}}]=cos({2x-\frac{π}{2}})=sin2x$,
由$\frac{π}{2}+2kπ≤2x≤\frac{3π}{2}+2kπ$(k∈Z),
解得單調(diào)遞減區(qū)間為$[{\frac{π}{4}+kπ,\frac{3π}{4}+kπ}]({k∈{Z}})$.
故選:B.

點(diǎn)評 本題主要考查三角函數(shù)的解析式的求法和性質(zhì)的靈活運(yùn)用能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓O的直徑AB=4,C為AO的中點(diǎn),弦DE過點(diǎn)C且滿足CE=2CD,求△OCE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為4的正方形,兩條虛線互相垂直,則該幾何體的體積是( 。
A.$\frac{176}{3}$B.$\frac{160}{3}$C.$\frac{128}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.$sin40°(tan10°-\sqrt{3})$=( 。
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={-1,0,1,2},B={x|x-1<0},則A∩B=(  )
A.(-1,1)B.(-1,0)C.{-1,0,1}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.△ABC內(nèi)一點(diǎn)O滿足$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=0$,直線AO交BC于點(diǎn)D,則( 。
A.$2\overrightarrow{DB}+3\overrightarrow{DC}=0$B.$3\overrightarrow{DB}+2\overrightarrow{DC}=0$C.$\overrightarrow{OA}-5\overrightarrow{OD}=0$D.$5\overrightarrow{OA}+\overrightarrow{OD}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S3,S9,S6成等差數(shù)列.
(Ⅰ)求證:a2,a8,a5成等差數(shù)列;
(Ⅱ)若等差數(shù)列{bn}滿足b1=a2=1,b3=a5,求數(shù)列{an3bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z=(t-1)+(t+1)i,t∈R,|z|的最小值是( 。
A.1B.2C.$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)直接寫出C1的普通方程和極坐標(biāo)方程,直接寫出C2的普通方程;
(Ⅱ)點(diǎn)A在C1上,點(diǎn)B在C2上,求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊答案