分析 求出雙曲線的漸近線,結(jié)合向量數(shù)量積的坐標(biāo)關(guān)系,建立方程關(guān)系求出a,b,c即可得到結(jié)論.
解答 解:雙曲線的漸近線方程為y=±$\frac{a}$x,
不妨設(shè)其中一條漸近線為y=$\frac{a}$x,右焦點(diǎn)為F(c,0)到漸近線y=$\frac{a}$x的距離為|MF|=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}$=b,
則$\overrightarrow{OF}$•$\overrightarrow{MF}$=|$\overrightarrow{OF}$|•|$\overrightarrow{MF}$|cos∠OFM=(|$\overrightarrow{OF}$|cos∠OFM)•|$\overrightarrow{MF}$|=|$\overrightarrow{MF}$||$\overrightarrow{MF}$|=b2=4,即b=2,
∵雙曲線的離心率為$\frac{\sqrt{13}}{3}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$,
即c2=$\frac{13}{9}$a2=a2+4,
得$\frac{4}{9}$a2=4,則a2=9,得a=3,c=$\sqrt{13}$,
故雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$,
故答案為:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$
點(diǎn)評(píng) 本題主要考查雙曲線方程的求解,根據(jù)雙曲線的離心率和向量的數(shù)量積建立方程關(guān)系求出a,b,c,的是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±4x | B. | y=±2x | C. | y=±$\frac{1}{2}x$ | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件 | |
B. | “若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的否命題是“若$α≠\frac{π}{6}$,則$sinα≠\frac{1}{2}$ | |
C. | 若$p:?{x_0}∈R,x_0^2-{x_0}-1>0$,則¬p:?x∈R,x2-x-1<0 | |
D. | 若p∧q為假命題,則p,q均為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com