9.一平面截一球得到面積為5π的圓面,球心到這個(gè)平面的距離為2,則該球的表面積是36π.

分析 作出球的軸截面圖,根據(jù)條件求出球的半徑,然后根據(jù)球的表面積公式進(jìn)行計(jì)算即可

解答 解:∵一平面截一球得到面積為5π的圓面,
∴半徑為:$\sqrt{5}$,
作出球的軸截面圖,由題意知AB=2$\sqrt{5}$,BC=$\sqrt{5}$,
球心到這個(gè)平面的距離為2,即OC=2,
∴球的半徑OB=$\sqrt{5+4}$=3,
∴球的表面積為4π×(3)2=36π.
故答案為:36π

點(diǎn)評(píng) 本題主要考查球的表面積的計(jì)算,根據(jù)條件求出球的半徑是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)在x軸上.直線2x-y=0與拋物線交于A、B兩點(diǎn),P(1,2)為線段AB的中點(diǎn),則拋物線的方程為y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,直線l過拋物線y2=4x的交點(diǎn)F且分別交拋物線及其準(zhǔn)線于A,B,C,若$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,則|AB|等于( 。
A.5B.6C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)正實(shí)數(shù)x,y,z,w滿足2012x2=2013y2=2014z2=2015w2,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$+$\frac{1}{w}$=1,試求$\sqrt{2012x+2013y+2014z+2015w}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0且a≠1,若函數(shù)f(x)=loga(ax2-2x+3)在[$\frac{1}{2}$,2]上是增函數(shù),則a的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足:0<a1<1,an+1=f(an),n=1,2,3,….
(1)證明:f(x)在(0,1)上是增函數(shù)
(2)用數(shù)學(xué)歸納法證明:0<an<1,n=1,2,3,…;
(3)證明:${a_{n+1}}<\frac{1}{6}{a_n}^3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圖甲是應(yīng)用分形幾何學(xué)做出的一個(gè)分形規(guī)律圖,按照?qǐng)D甲所示的分形規(guī)律可得圖乙所示的一個(gè)樹形圖.

我們采用“坐標(biāo)”來表示圖乙各行中的白圈、黑圈的個(gè)數(shù)(橫坐標(biāo)表示白圈的個(gè)數(shù),縱坐標(biāo)表示黑圈的個(gè)數(shù)).比如第一行記為(0,1),第二行記為(1,2),第三行記為(4,5),照此下去,第四行中白圈與黑圈的“坐標(biāo)”為(13,14),第n(n∈N*)行中白圈與黑圈的“坐標(biāo)”為($\frac{{3}^{n-1}-1}{2}$,$\frac{{3}^{n-1}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)F為拋物線E:y2=4x的焦點(diǎn),點(diǎn)A(2,m)在拋物線E上,則|AF|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=sin(ωx+φ-$\frac{π}{4}$)(ω>0,0<φ<$\frac{π}{2}$)為奇函數(shù),且y=f(x)的圖象與x軸的兩個(gè)相鄰交點(diǎn)之間的距離為π,設(shè)矩形區(qū)域Ω是由直線x=±$\frac{π}{2}$和y=±1所圍成的平面圖形,區(qū)域D是由函數(shù)y=f(x+$\frac{π}{2}$)、x=±$\frac{π}{2}$及y=-1所圍成的平面圖形,向區(qū)域Ω內(nèi)隨機(jī)地拋擲一粒豆子,則該豆子落在區(qū)域D的概率是$\frac{π+2}{2π}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案