20.如圖,直線l過拋物線y2=4x的交點(diǎn)F且分別交拋物線及其準(zhǔn)線于A,B,C,若$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,則|AB|等于( 。
A.5B.6C.$4\sqrt{3}$D.8

分析 作AM、BN垂直準(zhǔn)線于點(diǎn)M、N,根據(jù)$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,和拋物線的定義,可得tan∠NCB=2,從而可得直線方程,與拋物線方程聯(lián)立,利用拋物線的定義,即可得出結(jié)論.

解答 解:設(shè)A(x1,y1),B(x2,y2),
作AM、BN垂直準(zhǔn)線于點(diǎn)M、N,則|BN|=|BF|,
∵$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,∴sin∠NCB=$\frac{\sqrt{5}}{5}$,
∴tan∠NCB=2
∴AF的方程為y=2(x-1),
代入y2=4x,可得x2-3x+1=0
∴x1+x2=3,
∴|AB|=x1+x2+2=5.
故選:A.

點(diǎn)評 本題考查考查拋物線的定義,考查直線與拋物線的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為1的球面上,球心O在AB上,SO⊥底面ABC,$AC=\sqrt{2}$,則此三棱錐的體積為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F作垂直于x軸的直線交拋物線于A,B,兩點(diǎn),△AOB的面積為8,直線l與拋物線C相切于Q點(diǎn),P是l上一點(diǎn)(不與Q重合).
(Ⅰ)求拋物線C的方程;
(Ⅱ)若以線段PQ為直徑的圓恰好經(jīng)過F,求|PF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,下列幾何體由棱長為1的立方體按一定規(guī)律在地面擺成的,若將露出的表面都涂上顏色(地面不涂色),則第n個(gè)幾何體中只有兩個(gè)面涂色的小立方體共有8n-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知x>y>z>0,求證:$\frac{y}{x-y}$>$\frac{z}{x-z}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x2+y2=a,m2+n2=b(a>0,b>0),求證:mx+ny≤$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a,b∈R+,求證:(a+$\frac{1}{a}$)(b+$\frac{1}$)≥4,并說明等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一平面截一球得到面積為5π的圓面,球心到這個(gè)平面的距離為2,則該球的表面積是36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)過點(diǎn)P(-1,1)作兩直線,PA,PB與拋物線y2=4x任相切于點(diǎn)A,B,若F為拋物線y2=4x的焦點(diǎn),|$\overrightarrow{AF}$|•|$\overrightarrow{BF}$|=( 。
A.$\sqrt{15}$B.5C.8D.9

查看答案和解析>>

同步練習(xí)冊答案