11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{5}}}{3}$,橢圓上一點(diǎn)P到兩焦點(diǎn)距離之和為12,則b=(  )
A.8B.6C.5D.4

分析 由離心率公式和橢圓的定義,可得a=6,結(jié)合a,b,c的關(guān)系,解得b.

解答 解:由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
由橢圓上一點(diǎn)P到兩焦點(diǎn)距離之和為12,
可得2a=12,即有a=6,
c=2$\sqrt{5}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=4,
故選:D.

點(diǎn)評 本題考查橢圓的離心率公式的運(yùn)用,以及定義的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}中,a1=1,an+1=-an+n2,求數(shù)列{an}的通項(xiàng)公式及a2000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.雙曲線${x^2}-\frac{y^2}{3}=1$的右焦點(diǎn)坐標(biāo)是(2,0);焦點(diǎn)到漸近線的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.cosasin(a+$\frac{π}{6}$)+sinasin(a-$\frac{π}{3}$)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域?yàn)椋?∞,+∞),如果,f(x+2016)=$\left\{\begin{array}{l}\sqrt{2}sinx,x≥0\\ lg(-x),x<0\end{array}\right.$,那么$f(2016+\frac{π}{4})•f(-7984)$=( 。
A.2016B.$\frac{1}{4}$C.4D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙兩人進(jìn)行定點(diǎn)投籃比賽,在距籃筐3米線內(nèi)設(shè)一點(diǎn)A,在點(diǎn)A處投中一球得2分,不中得0分,在距籃筐3米線段外設(shè)一點(diǎn)B,在點(diǎn)B處投中一球得3分,不中得0分,已知甲乙兩人在A點(diǎn)投中的概率都是$\frac{1}{2}$,在B點(diǎn)投中的概率都是$\frac{1}{3}$,且在A,B兩點(diǎn)處投中與否相互獨(dú)立,設(shè)定甲乙兩人現(xiàn)在A處各投籃一次,然后在B處各投籃一次,總得分高者獲勝.
(Ⅰ)求甲投籃總得分ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,P是橢圓C上一點(diǎn),O為坐標(biāo)原點(diǎn).已知∠POA=60°,且OP⊥AP,則橢圓C的離心率為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{4}+{y}^{2}$=1的兩個(gè)焦點(diǎn),A,B分別是該橢圓的左頂點(diǎn)和上頂點(diǎn),點(diǎn)P在線段AB上,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的最小值為-$\frac{11}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.關(guān)于函數(shù)f(x)=sin2x-cos2x有下列命題:
①函數(shù)y=f(x)的周期為π;
②直線x=$\frac{π}{4}$是y=f(x)圖象的一條對稱軸;
③點(diǎn)$({\frac{π}{8},\;0})$是y=f(x)圖象的一個(gè)對稱中心.
其中所有真命題的序號是①③.

查看答案和解析>>

同步練習(xí)冊答案