4.在解不等式“x3+1>0”中,我們有如下解題思路:設(shè)f(x)=x3+1,則f(x) 在R上單調(diào)遞增,且f(-1)=0,所以不等式x3+1>0的解集是(-1,+∞).類比上述解題思路,則不等式ex+x-1>0的解集為(0,+∞).

分析 由已知中解不等式“x3+1>0”的思路,我們可以構(gòu)造函數(shù)f(x)=ex+x-1,分析函數(shù)的單調(diào)性和零點(diǎn),進(jìn)而得到不等式ex+x-1>0的解集.

解答 解:由解不等式“x3+1>0”中,
設(shè)f(x)=x3+1,則f(x) 在R上單調(diào)遞增,且f(-1)=0,
所以不等式x3+1>0的解集是(-1,+∞).
類比可得,在解答不等式ex+x-1>0時(shí),
設(shè)f(x)=ex+x-1,則f(x) 在R上單調(diào)遞增,且f(0)=0,
所以不等式ex+x-1>0的解集是(0,+∞).
故答案為:(0,+∞)

點(diǎn)評(píng) 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=sinx在區(qū)間(0,2π)上可找到n個(gè)不同數(shù)x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,則n的最大值等于(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,正方形ABCD的邊長(zhǎng)為1,P,Q分別為AB,DA上的點(diǎn).當(dāng)△APQ的周長(zhǎng)為2時(shí),則∠PCQ的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在海岸線EF一側(cè)有一休閑游樂(lè)場(chǎng),游樂(lè)場(chǎng)的前一部分邊界為曲線段FGBC,該曲線段是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[-4,0]的圖象,圖象的最高點(diǎn)為B(-1,2).邊界的中間部分為長(zhǎng)1千米的直線段CD,且CD∥EF.游樂(lè)場(chǎng)的后一部分邊界是以O(shè)為圓心的一段圓弧$\widehat{DE}$.
(1)求曲線段FGBC的函數(shù)表達(dá)式;
(2)曲線段FGBC上的入口G距海岸線EF最近距離為1千米,現(xiàn)準(zhǔn)備從入口G修一條筆直的景觀路到O,求景觀路GO長(zhǎng);
(3)如圖,在扇形ODE區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū)OMPQ,平行四邊形的一邊在海岸線EF上,一邊在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧$\widehat{DE}$上,且∠POE=θ,求平行四邊形休閑區(qū)OMPQ面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.經(jīng)過(guò)點(diǎn)(3,0),離心率為$\frac{5}{3}$的雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.己知圓O:x2+y2=1和圓C:x2+y2-2x-4y+m=0相交于A、B兩點(diǎn),若|AB|=$\frac{{4\sqrt{5}}}{5}$,則m的值是1或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若a,b,c為直角三角形的三邊,其中c為斜邊,則a2+b2=c2,稱這個(gè)定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體O-ABC中,∠AOB=∠BOC=∠COA=90°,S為頂點(diǎn)O所對(duì)面的面積,S1,S2,S3分別為側(cè)面△OAB,△OAC,△OBC的面積,則S,S1,S2,S3滿足的關(guān)系式為${S}^{2}={S}_{1}^{2}+{S}_{2}^{2}+{S}_{3}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)(2,1)且與原點(diǎn)距離最大的直線的方程是( 。
A.x+2y-5=0B.y=$\frac{1}{2}$x+1C.2x+y-5=0D.3x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在極坐標(biāo)系中,點(diǎn)P為曲線ρ=3上任一點(diǎn),點(diǎn)Q為曲線ρcosθ=4上任一點(diǎn),則P、Q兩點(diǎn)間距離的最小值1.

查看答案和解析>>

同步練習(xí)冊(cè)答案