已知函數(shù)y=g(x)在[a,b]上單調(diào)遞減,函數(shù)y=f(x)在[g(b),g(a)]上單調(diào)遞減,證明:函數(shù)y=f(g(x))在[a,b]上單調(diào)遞增.
考點:復合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)單調(diào)性的定義以及復合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:設t=g(x),
任意設a≤x1<x2≤b,對應的函數(shù)值t1=g(x1),t2=g(x2),
∵函數(shù)y=g(x)在[a,b]上單調(diào)遞減,
∴t1>t2,
∵函數(shù)y=f(x)在[g(b),g(a)]上單調(diào)遞減,
∴當t1>t2時,y1=f(t1)<y2=f(t2),
即當a≤x1<x2≤b時,y1<y2
∴函數(shù)y=f(g(x))在[a,b]上單調(diào)遞增.
點評:本題主要考查函數(shù)單調(diào)性的判斷和證明,利用函數(shù)單調(diào)性的定義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

當x=
 
時,函數(shù)y=sin(2x-
π
6
)+3有最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中,角A、B、C所對邊分別為a、b、c,若cos2C=1-
c2
b2
,則角B的大小為( 。
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(b-
2-a2
)x+a+b
是偶函數(shù),則此函數(shù)的圖象與y軸交點的縱坐標的最大值為( 。
A、
2
B、2
C、4
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,定義兩點P(x1,y1)與Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.給出下列命題:
(1)若P(1,2),Q(sinα,2cosα)(α∈R),則d(P,Q)的最大值為3+
5
;
(2)若P,Q是圓x2+y2=1上的任意兩點,則d(P,Q)的最大值為2
2
;
(3)若P(1,3),點Q為直線y=2x上的動點,則d(P,Q)的最小值為
1
2

其中為真命題的是( 。
A、(1)(2)(3)
B、(1)(2)
C、(1)(3)
D、(2)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x
+ax+b
的圖象在點A(1,f(1))處的切線與直線l:2x-4y+3=0平行.
(Ⅰ)證明函數(shù)y=f(x)在區(qū)間(1,e)存在最大值;
(Ⅱ)記函數(shù)g(x)=xf(x)+c,若g(x)≤0,對一切x∈(0,+∞),b∈(0,
3
2
)
恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

德陽中學數(shù)學競賽培訓共開設有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學競賽復賽的資格,現(xiàn)有甲、乙、丙三位同學報名參加數(shù)學競賽培訓,每一位同學對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,
課     程 初等代數(shù) 初等幾何 初等數(shù)論 微積分初步
合格的概率
3
4
2
3
2
3
1
2
(1)求甲同學取得參加數(shù)學競賽復賽的資格的概率;
(2)記ξ表示三位同學中取得參加數(shù)學競賽復賽的資格的人數(shù),求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
2
sinx+sin(
π
4
-x)

(Ⅰ)求f(x)的最小正周期與單調(diào)增區(qū)間.
(Ⅱ)當x∈(-
π
2
,
π
2
)
,求f(x)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
4
)

(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若f(x0-
π
8
)=-
6
5
,求f(x0)的值.

查看答案和解析>>

同步練習冊答案