20.已知z=2x-y,式中變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ y≤x\\ x≤2\end{array}\right.$,則z的最大值為5.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)z的幾何意義,進(jìn)行平移,結(jié)合圖象得到z=2x-y的最大值.

解答 解:由z=2x-y得y=2x-z,
作出不等式對應(yīng)的平面區(qū)域(陰影部分)如圖:
平移直線y=2x-z,由圖象可知當(dāng)直線y=2x-z經(jīng)過點C時,直線y=2x-z的截距最小,此時z最大.
由$\left\{\begin{array}{l}{x=2}\\{x+y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
所以z的最大值為z=2×2-(-1)=4+1=5,
故答案為:5.

點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知cosα=$\frac{\sqrt{3}}{3}$,則cos(3π+α)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在區(qū)間[0,6]上隨機(jī)取一個數(shù)x,則事件“1≤2x≤5”發(fā)生的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-1,0)$,則$\overrightarrow a•\overrightarrow b$=(  )
A.3B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=cos2x+2sinx的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,$A{A_1}=AC=2,AB=\sqrt{3}$,E,F(xiàn)分別是A1C1,AB的中點.
(I)求證:平面BCE⊥平面A1ABB1;(II)求證:EF∥平面B1BCC1;
(III)求四棱錐B-A1ACC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若樣本4,5,7,x,9的平均數(shù)為7,則該樣本的方差為$\frac{26}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計算定積分${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+3x)dx=$\frac{π}{4}+\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從等邊三角形紙片ABC上,剪下如圖所示的兩個正方形,其中BC=3+$\sqrt{3}$,則這兩個正方形的面積之和的最小值為$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊答案